✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
随着可再生能源,如太阳能和风能,在电力系统中的渗透率日益提高,电力系统的灵活性需求日益凸显。可再生能源发电的间歇性和波动性给电力系统的稳定运行带来了挑战,而储能作为一种重要的灵活性资源,其优化配置对于提高电力系统的运行效率和可靠性至关重要。然而,在实际电力系统中,灵活性供需均存在不确定性,这进一步增加了储能优化配置的复杂性。因此,如何考虑灵活性供需不确定性,并进行有效的储能优化配置,成为了一个亟待解决的关键问题。
首先,我们必须认识到灵活性需求和供给的不确定性来源。在需求侧,用户用电行为受多种因素影响,如天气变化、经济活动和突发事件等,导致负荷曲线的波动和预测偏差。在供给侧,可再生能源发电出力受自然条件影响,具有高度的随机性,难以精确预测。这种不确定性直接影响着电力系统的平衡,并对灵活性资源的配置提出更高要求。
传统的储能优化配置方法往往采用确定性的模型,即将灵活性供需视为已知量进行优化。然而,这种方法忽略了实际系统中普遍存在的不确定性,容易导致储能容量配置不足或过剩,从而影响电力系统的经济性和可靠性。因此,亟需引入能够有效处理不确定性的优化方法。
针对灵活性供需的不确定性,目前研究人员提出了多种储能优化配置方法,主要可分为以下几类:
-
基于场景的方法: 该方法首先构建一系列具有代表性的场景来模拟灵活性供需的不确定性,例如,不同的风速和光照水平、不同的负荷水平等。然后在每个场景下进行储能优化配置,最后通过加权平均等方式得到最终的配置方案。这种方法简单易行,但在场景构建过程中可能遗漏一些极端情况,影响优化结果的鲁棒性。
-
基于随机优化的方法: 该方法将灵活性供需的不确定性建模为随机变量,并通过概率分布函数进行描述。然后,通过求解随机优化模型,得到能够适应不确定性的储能配置方案。常见的随机优化方法包括情景法、机会约束规划和鲁棒优化等。这种方法能够较好地处理不确定性,但计算复杂度较高。
-
基于数据驱动的方法: 该方法利用历史数据训练机器学习模型,例如,神经网络、支持向量机等,来预测灵活性供需的不确定性。然后,基于预测结果进行储能优化配置。这种方法能够充分利用历史数据,提高预测精度,但对数据质量要求较高。
在实际应用中,储能优化配置还需要综合考虑多种因素,包括储能类型、容量、位置、充放电功率、运行策略以及成本等。同时,电力系统的运行约束,如电压稳定、频率稳定和线路容量限制等,也需要纳入优化模型中。
总而言之,考虑灵活性供需不确定性的储能优化配置是一个复杂而具有挑战性的问题。未来的研究方向应侧重于以下几个方面:一是开发更精确的不确定性建模方法,例如,基于深度学习的概率预测模型;二是探索更高效的优化算法,以降低计算复杂度,提高求解效率;三是建立更完善的评估体系,以综合衡量储能优化配置的经济性、可靠性和环境效益。只有通过不断的研究和创新,才能实现储能在电力系统中的合理配置,从而推动可再生能源的广泛应用,构建更加清洁、安全、高效的现代电力系统。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇