✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
随着可再生能源在电力系统中的渗透率日益提高,其固有的间歇性和波动性对电网的稳定运行提出了严峻挑战。储能技术因其快速响应和灵活控制的特性,在电力系统调峰、调频方面展现出巨大的应用潜力。本文旨在探讨电力系统储能调峰、调频模型的研究现状与发展趋势,并以复现SCI文献中的代表性模型为切入点,分析不同储能类型在不同应用场景下的性能表现,并探讨模型构建中的关键因素和挑战。通过对现有模型的深入研究和复现,本文旨在为未来电力系统储能的优化配置和控制策略提供参考,并促进储能技术在构建新型电力系统中的应用。
1. 引言
全球能源转型的大背景下,可再生能源,如风能和太阳能,正逐渐成为电力供应的主力军。然而,这些能源的出力具有显著的随机性和间歇性,给电力系统的稳定运行和可靠供电带来了巨大的挑战。传统电力系统主要依靠火电机组进行调峰和调频,但火电机组的响应速度相对较慢,且存在碳排放问题,已难以满足新型电力系统的需求。储能技术,作为一种能够存储和释放电能的装置,具有响应速度快、调节精度高、能量转换效率高等优点,在提高电力系统灵活性、保障电力系统安全稳定运行方面具有重要作用。
储能的应用场景十分广泛,尤其是在调峰和调频方面。调峰是指在电力负荷高峰期提供额外的电力供应,以弥补供需缺口,保障电力系统的可靠性。调频是指快速响应电力系统中出现的频率波动,维持系统频率在允许的范围内,保证电能质量。储能技术能够根据电网的需求快速充放电,平滑负荷曲线,抑制频率波动,从而有效提高电力系统的稳定性和经济性。
近年来,国内外学者针对电力系统储能调峰、调频模型开展了大量的研究工作。然而,由于储能技术的多样性、电力系统的复杂性以及应用场景的差异,相关研究仍面临诸多挑战。本文旨在通过对相关SCI文献的复现研究,深入探讨储能模型在调峰和调频中的应用原理、关键参数以及性能表现,以期为未来的研究提供参考。
2. 电力系统储能调峰模型研究
调峰是指在电力负荷高峰时段,通过释放储能系统中存储的电能,弥补电力供需缺口,降低峰值负荷,从而提高电力系统的利用效率和可靠性。不同的储能技术具有不同的充放电特性和能量容量,因此,在构建储能调峰模型时,需要考虑储能类型、充放电功率、充放电深度、循环寿命等因素。
2.1 储能类型与调峰特性
目前,用于电力系统调峰的储能技术主要包括抽水蓄能、电池储能、压缩空气储能、飞轮储能等。
-
抽水蓄能: 技术成熟,容量大,但受地理条件限制,响应速度相对较慢。
-
电池储能: 响应速度快,能量转换效率高,但成本较高,容量有限。
-
压缩空气储能: 成本较低,能量容量大,但建设周期长,能量转换效率较低。
-
飞轮储能: 响应速度极快,但能量存储时间短,能量容量较小。
在选择储能类型时,需要综合考虑成本、性能、适用场景等因素。针对不同的负荷特性和峰谷差,需要选择合适的储能类型,并对其容量和功率进行合理的配置。
2.2 储能调峰模型构建
储能调峰模型主要包括储能充放电功率模型、储能状态模型、储能寿命模型等。
-
储能充放电功率模型: 该模型描述了储能在不同时刻的充放电功率,受到储能容量、功率限制、充放电效率等因素的制约。其目标是在满足负荷需求的前提下,优化储能的充放电策略。
-
储能状态模型: 该模型描述了储能在不同时刻的储能状态(State of Charge, SOC),其变化受到充放电功率的影响,并存在一定的上限和下限。
-
储能寿命模型: 该模型描述了储能在不同工况下的循环寿命,受到充放电深度和循环次数的影响。
在构建储能调峰模型时,需要充分考虑储能的物理特性,采用合理的数学模型描述其充放电过程。
2.3 案例分析与复现
通过复现SCI文献中典型的储能调峰模型,例如基于动态规划、模型预测控制等方法,分析不同储能类型在不同负荷曲线下的调峰效果。对比不同控制策略的性能,研究参数变化对调峰效果的影响。通过实验验证模型的有效性和鲁棒性。
3. 电力系统储能调频模型研究
调频是指在电力系统受到扰动时,通过快速调节储能的充放电功率,抑制频率波动,维持系统频率稳定在允许的范围内。储能的快速响应特性使其在电力系统调频中具有独特的优势。
3.1 储能调频控制策略
储能调频控制策略主要分为以下几种:
-
比例控制: 根据系统频率偏差的大小,按照比例关系输出储能的充放电功率。
-
比例积分控制: 在比例控制的基础上引入积分控制,消除稳态误差。
-
下垂控制: 根据系统频率偏差的大小,按照下垂特性输出储能的充放电功率,实现多储能单元的协同控制。
-
模糊控制和人工智能控制: 基于模糊逻辑和人工智能算法,实现更精细、更高效的调频控制。
针对不同的系统频率波动特性,需要选择合适的调频控制策略,并进行参数优化。
3.2 储能调频模型构建
储能调频模型主要包括储能充放电功率模型、储能状态模型、系统频率模型等。
-
储能充放电功率模型: 该模型描述了储能在不同时刻的充放电功率,受到储能容量、功率限制、充放电效率等因素的制约,并受到调频控制策略的影响。
-
储能状态模型: 该模型描述了储能在不同时刻的储能状态(SOC),受到充放电功率的影响,并存在一定的上限和下限。
-
系统频率模型: 该模型描述了电力系统频率的动态变化,受到负荷扰动、发电机惯性、储能调频的影响。
在构建储能调频模型时,需要准确描述电力系统的动态特性,并充分考虑储能的快速响应能力。
📣 部分代码
% Bill
total = lambda.elec*ones(1,T)*(s-b)*ts + lambda.peak*max(s-b)...
+ lambda.battery*norm(b,1)*ts;
elec = lambda.elec*ones(1,T)*(s-b)*ts;
peak = lambda.peak*max(s-b);
bat = lambda.battery*norm(b,1)*ts;
reg = 0;
regc = 0;
regp = 0;
if fig_flag == 1
% SoC
SoC_3 = zeros(T,1);
SoC_3(1) = battery.socini;
for i = 2:T
SoC_3(i) = (battery.socini*battery.energy-sum(b(1:i-1))*ts)/battery.energy;
end
% figure
figure;
subplot(2,1,1)
hold all;
plot(tt,s,'-.b','LineWidth',2);
plot(tt,s-b,'--g','LineWidth',2);
hold off;
xlabel('time[s]');
ylabel('power[MW]');
grid on
legend('grid consumption','after shaving');
title(sprintf('Peak shaving only, shaved peak: %.2f', max(s)-max(s-b)));
subplot(2,1,2)
plot(tt,SoC_3,'b');
xlabel('time[s]');
ylabel('SoC[%]');
grid on
title('Battery only for peak shaving: SoC curve');
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇