✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🎁 私信更多全部代码、Matlab仿真定制
🔥 内容介绍
近年来,随着控制理论、人工智能和网络通信技术的飞速发展,多智能体系统(Multi-Agent System, MAS)逐渐成为一个备受瞩目的研究领域。多智能体系统由多个相互作用的智能体组成,这些智能体通过局部通信和合作,共同完成复杂任务。与传统的单智能体系统相比,多智能体系统具有更强的鲁棒性、灵活性和可扩展性,因此在分布式机器人、传感器网络、智能交通等众多领域展现出巨大的应用潜力。一致性控制是多智能体系统中最基本且最重要的控制问题之一,其目标是使系统中所有智能体的状态(例如位置、速度、姿态等)最终达成一致。而一致性跟踪则是在一致性控制的基础上,要求所有智能体的状态不仅趋于一致,还需跟踪一个给定的参考轨迹。
在实际应用中,由于物理特性、功能需求以及环境约束等因素的影响,多智能体系统往往呈现出异质性。异质多智能体系统中的智能体拥有不同的动力学模型、控制输入约束、初始状态等,这为一致性跟踪控制带来了更大的挑战。例如,在多机器人协同搬运任务中,不同类型的机器人(如轮式机器人、机械臂等)可能具有不同的运动模型和控制能力;在无人机编队飞行中,不同型号的无人机可能具有不同的动力学特性和传感器性能。因此,针对异质多智能体系统的一致性跟踪控制问题具有重要的理论意义和实际价值。
本文将深入探讨异质多智能体系统的固定时间一致性跟踪问题。与渐近收敛和有限时间收敛相比,固定时间收敛具有一个显著的优势,即系统的收敛时间由一个固定的上限约束,且该上限不依赖于系统的初始状态。这一特性使得固定时间一致性跟踪在对时间要求较高的应用场景中更具吸引力。然而,实现异质多智能体系统的固定时间一致性跟踪并非易事,主要面临以下挑战:
-
系统异质性: 不同智能体之间的动力学差异、参数不确定性、输入约束等使得设计统一的控制协议变得困难。如何有效地处理这些异质性因素,确保所有智能体能够快速且准确地跟踪参考轨迹,是一个核心挑战。
-
网络拓扑结构: 多智能体系统中的通信拓扑结构直接影响着信息传播和协作效率。通信延迟、丢包以及动态变化的拓扑结构都会对一致性跟踪性能产生不利影响。
-
固定时间收敛控制: 实现固定时间收敛通常需要用到非光滑控制技术,例如符号函数(sign function)或幂积分(power integrator)。如何在多智能体系统框架下巧妙地运用这些非光滑控制方法,避免奇异性问题,并确保闭环系统的稳定性,是一个重要的难题。
针对以上挑战,研究者们提出了多种解决方案,包括以下几个主要方向:
1. 基于自适应控制的固定时间一致性跟踪:
自适应控制方法能够实时估计系统中的不确定性参数,并根据估计值调整控制律,从而提高系统的鲁棒性。在固定时间一致性跟踪问题中,自适应控制通常与非光滑控制技术相结合。例如,可以设计自适应律来估计系统中的未知参数,并利用估计值设计固定时间收敛的控制律。这种方法可以有效地应对系统参数的不确定性和异质性。
2. 基于滑模控制的固定时间一致性跟踪:
滑模控制是一种鲁棒性很强的非线性控制方法,它通过设计合适的滑模面,迫使系统状态在有限时间内到达滑模面,并在滑模面上保持运动。近年来,滑模控制与固定时间收敛理论相结合,为解决固定时间一致性跟踪问题提供了新的思路。通过巧妙地设计滑模面和控制律,可以实现系统状态的固定时间收敛和跟踪。然而,滑模控制也面临着抖振问题,需要采用合适的措施来减缓或消除抖振。
3. 基于一致性算法的固定时间一致性跟踪:
一致性算法是实现多智能体系统协作控制的核心。针对固定时间一致性跟踪问题,研究者们提出了多种固定时间一致性算法。这些算法通常利用邻居智能体的信息,通过局部交互来实现全局一致性。为了处理异质性问题,可以为不同的智能体设计不同的控制增益或自适应律,以适应其各自的动力学特性。
4. 基于事件触发机制的固定时间一致性跟踪:
传统的周期性采样控制可能会导致资源浪费和不必要的计算开销。事件触发控制仅在满足预定事件条件时才更新控制输入,从而减少了通信次数和计算量,并节省了能量。将事件触发机制引入固定时间一致性跟踪问题,可以在保证跟踪性能的前提下,有效地降低系统的资源消耗。
尽管在异质多智能体系统固定时间一致性跟踪方面已经取得了一定的进展,但仍存在许多值得深入研究的问题。未来的研究方向可能包括以下几个方面:
-
更加复杂的异质性: 实际系统中,智能体的异质性可能更加复杂,例如,非匹配的输入约束、非线性动力学以及未知的时变扰动。如何设计更具鲁棒性和适应性的固定时间控制策略,来处理这些复杂的异质性,仍然是一个挑战。
-
更加灵活的通信拓扑: 实际应用中,通信网络可能面临动态变化、通信延迟和丢包等问题。如何在这些复杂的网络条件下保证固定时间一致性跟踪的性能,是一个值得研究的课题。
-
固定时间跟踪的收敛速度: 虽然固定时间收敛的上限不依赖于初始状态,但收敛速度仍然可能较慢。如何设计更加有效的控制算法,进一步提高收敛速度,是未来的一个重要研究方向。
-
考虑约束条件下的固定时间跟踪: 实际系统中,智能体的状态和控制输入往往受到各种约束。如何设计约束条件下的固定时间控制策略,保证系统的稳定性和跟踪性能,是一个具有挑战性的问题。
总结:
异质多智能体系统的固定时间一致性跟踪是一个具有重要理论意义和实际应用价值的研究领域。解决该问题不仅能够提高多智能体系统的协作性能和鲁棒性,而且为未来的智能系统设计提供了重要的理论指导。未来,随着控制理论、人工智能和通信技术的不断发展,针对异质多智能体系统的固定时间一致性跟踪控制研究必将取得更加丰硕的成果。研究者们将继续探索更加高效、鲁棒、适应性强的控制方法,以满足日益增长的应用需求。
📣 部分代码
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 12;%12个智能体的状态,即6个位置估计状态,6个速度估计状态
sizes.NumDiscStates = 0;
sizes.NumOutputs = 12;
sizes.NumInputs = 15;%6个位置估计状态,6个速度估计状态,领导者的位置信息,速度信息,控制力信息
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;
sys=simsizes(sizes);
x0=[1 2 3 4 5 6 1 3 5 7 9 2];%前6为智能体的状态估计信息,后6位智能体的速度估计信息
str=[];
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇