【电力系统】新型海上风电机组及压缩空气储能系统的建模与控制附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

随着全球能源需求的日益增长和化石燃料带来的环境压力日益加剧,可再生能源的开发和利用已成为解决能源危机的关键途径。风能,作为一种储量丰富、清洁无污染的可再生能源,受到了广泛的关注。其中,海上风电凭借其风力资源稳定、风速高、土地资源占用少等优势,逐渐成为风电领域的重要发展方向。然而,海上风电发电的间歇性和波动性给电力系统的稳定运行带来了挑战。为了解决这一问题,储能技术被认为是提高海上风电并网可靠性、增强电力系统灵活性的有效手段。压缩空气储能(CAES)系统,以其规模化、长时储能的特点,在与风电集成应用方面展现出巨大的潜力。本文将深入探讨新型海上风电机组及压缩空气储能系统的建模与控制问题,旨在为提升海上风电并网的可靠性和经济性提供理论基础和技术支持。

一、 新型海上风电机组建模

传统的海上风电机组主要采用固定转速感应发电机(FSIG)或双馈感应发电机(DFIG)。近年来,随着电力电子技术和控制策略的不断进步,直驱永磁同步发电机(PMSG)逐渐成为海上风电机组的主流选择。PMSG风电机组具有结构简单、运行可靠、维护成本低等优点,能够直接将风能转化为电能,无需齿轮箱等机械传动部件,从而降低了故障率,提高了效率。

PMSG风电机组的建模主要包括以下几个方面:

  1. 风力机模型: 风力机模型描述了风能转化为机械能的过程。通常使用风力机的功率特性曲线来描述风能的利用效率,该曲线表示了风力机输出功率系数Cp与叶尖速比λ和桨距角β之间的关系。通过对风速、风力机半径、空气密度等参数进行分析,可以建立精确的风力机功率输出模型,为风电机组的控制提供输入。

  2. 永磁同步发电机模型: PMSG采用旋转磁场,其电气特性相对复杂。在d-q坐标系下,PMSG的电压方程和磁链方程可以用来描述发电机的电磁特性。此外,还需要考虑发电机的定子电阻、定子电感、永磁体磁链等参数,以建立精确的发电机模型。

  3. 电力电子变换器模型: PMSG风电机组通常需要通过全功率变流器与电网连接。全功率变流器包含背靠背的整流器和逆变器。整流器用于将发电机产生的交流电转换成直流电,逆变器则将直流电转换成与电网频率和电压相匹配的交流电。对电力电子变换器的建模需要考虑开关器件的非线性特性、控制策略以及滤波器的影响。

  4. 控制系统模型: 风电机组的控制系统是实现风能高效利用和稳定并网的关键。常用的控制策略包括最大功率点跟踪(MPPT)控制、桨距角控制和电网电压电流控制。MPPT控制旨在使风电机组始终工作在最佳运行点,最大限度地捕捉风能。桨距角控制用于限制风电机组在高风速下的输出功率,防止设备损坏。电网电压电流控制则负责维持电网电压的稳定,并实现有功和无功功率的调节。

二、 压缩空气储能系统建模

压缩空气储能(CAES)系统是一种将电能转化为压缩空气的势能进行储存,并在需要时通过膨胀做功释放能量的储能技术。CAES系统主要由压缩机、储气罐、膨胀机、换热器和控制系统组成。根据是否利用化石燃料加热压缩空气,CAES系统可分为常规CAES和先进CAES两种类型。考虑到环保因素,先进CAES更具发展前景。

CAES系统的建模主要包括以下几个方面:

  1. 压缩机模型: 压缩机用于将空气压缩到高压状态。压缩过程通常分为等温压缩、绝热压缩和多变压缩三种类型。在建模过程中,需要考虑压缩机的效率、压力比、进出口温度等参数,以建立精确的压缩机模型。

  2. 储气罐模型: 储气罐用于储存高压压缩空气。储气罐的建模需要考虑其容积、压力、温度等参数,并建立压力与体积之间的关系。此外,还需要考虑储气罐的热交换特性,以及泄漏等因素的影响。

  3. 膨胀机模型: 膨胀机用于将高压压缩空气膨胀做功,驱动发电机发电。膨胀过程通常分为等温膨胀、绝热膨胀和多变膨胀三种类型。在建模过程中,需要考虑膨胀机的效率、压力比、进出口温度等参数,以建立精确的膨胀机模型。

  4. 换热器模型: 换热器用于提高膨胀机的效率。在压缩过程中,空气温度升高;在膨胀过程中,空气温度降低。通过换热器,可以利用压缩过程产生的热量预热进入膨胀机的空气,从而提高系统的效率。

  5. 控制系统模型: CAES系统的控制系统负责协调各个部件的运行,实现能量的有效储存和释放。控制策略主要包括压缩机和膨胀机的流量控制、储气罐压力的控制以及能量管理策略。

三、 新型海上风电机组及压缩空气储能系统的联合控制

将海上风电机组与压缩空气储能系统进行联合控制,可以有效平抑风电功率的波动,提高电力系统的稳定性,并实现能量的高效利用。联合控制策略需要综合考虑风电机组的运行状态、储能系统的容量以及电网的需求。

⛳️ 运行结果​

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值