基于粒子群算法优化BP神经网络的PID控制算法附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

PID控制算法以其结构简单、鲁棒性强、易于实现等优点,在工业控制领域得到了广泛应用。然而,传统的PID控制算法依赖于人工整定参数,这是一个费时费力且高度依赖经验的过程,尤其是在面对复杂、时变、非线性的控制对象时,人工整定往往难以达到理想的控制效果。BP神经网络凭借其强大的非线性映射能力和自学习能力,可以有效地逼近复杂的非线性系统,并在此基础上实现控制。但BP神经网络也存在自身的问题,例如易陷入局部极小值、训练速度慢等。因此,将BP神经网络应用于PID控制参数整定,并采用优化算法对其进行改进,成为近年来控制领域的研究热点。本文将重点讨论基于粒子群算法(PSO)优化BP神经网络的PID控制算法,旨在提升PID控制系统的性能和鲁棒性。

一、PID控制与BP神经网络PID控制PID控制算法通过比例(P)、积分(I)、微分(D)三个环节对控制偏差进行线性组合,生成控制信号。其数学表达式如下:

u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt

其中,u(t)为控制输出,e(t)为控制偏差(设定值与实际值之差),Kp、Ki、Kd分别为比例、积分、微分系数。PID控制器的性能受到Kp、Ki、Kd三个参数的影响,不同的参数组合会直接影响系统的响应速度、稳定性和精度。

传统的PID参数整定方法包括经验法、试凑法、Z-N整定法等,这些方法需要大量的实验和调试,效率较低,且在复杂系统中的效果往往不尽如人意。

BP神经网络是一种多层前馈神经网络,通过反向传播算法调整网络权值和阈值,实现对输入输出关系的逼近。将BP神经网络应用于PID控制,实质上是将神经网络作为一种非线性函数逼近器,用于学习PID控制参数Kp、Ki、Kd与系统性能之间的关系。通过训练,神经网络可以根据系统的实时状态,动态地调整PID参数,从而实现更精确的控制。

二、BP神经网络PID控制的局限性

虽然BP神经网络具有强大的非线性映射能力,但将其直接应用于PID控制参数整定仍然存在以下局限性:

  1. 易陷入局部极小值: BP神经网络使用梯度下降法进行训练,容易陷入局部极小值,导致无法获得全局最优的PID参数。

  2. 训练速度慢: BP神经网络的训练需要大量的迭代,且学习速率的选择对训练效果影响很大,训练过程耗时较长。

  3. 参数选择敏感: BP神经网络的结构(如层数、神经元数量)和参数(如学习速率、动量因子)的选择对网络性能影响显著,需要大量的实验和调试。

  4. 泛化能力有限: 在训练数据覆盖范围之外,BP神经网络的泛化能力可能较差,导致控制效果下降。

三、粒子群算法(PSO)

粒子群算法是一种基于群体智能的优化算法,模拟鸟群觅食的行为,通过迭代搜索寻找最优解。在PSO中,每个个体被称为粒子,代表问题的一个潜在解。粒子通过跟踪自身历史最优位置和群体最优位置来更新自己的速度和位置,从而在搜索空间中不断寻优。

PSO算法的主要步骤如下:

  1. **初始化:**随机初始化粒子的位置和速度。

  2. **评价:**计算每个粒子的适应度值,适应度值用于衡量粒子所代表解的优劣。

  3. **更新个体最优位置(pbest):**如果当前粒子的适应度值优于其历史最优位置的适应度值,则更新pbest。

  4. **更新群体最优位置(gbest):**如果当前粒子的适应度值优于群体最优位置的适应度值,则更新gbest。

  5. **更新速度和位置:**根据以下公式更新粒子的速度和位置:

v_i(t+1) = w * v_i(t) + c1 * rand() * (pbest_i - x_i(t)) + c2 * rand() * (gbest - x_i(t))
x_i(t+1) = x_i(t) + v_i(t+1)

其中,v_i(t)为粒子i在t时刻的速度,x_i(t)为粒子i在t时刻的位置,w为惯性权重,c1和c2为加速系数,rand()为0到1之间的随机数,pbest_i为粒子i的历史最优位置,gbest为群体最优位置。

  1. **判断终止条件:**如果满足终止条件(如达到最大迭代次数或适应度值满足要求),则结束搜索,否则返回步骤2。

PSO算法具有以下优点:

  1. 易于实现: PSO算法的原理简单,实现容易。

  2. 收敛速度快: PSO算法通过群体协作搜索,收敛速度较快。

  3. 全局搜索能力强: PSO算法具有较强的全局搜索能力,不易陷入局部极小值。

  4. 参数较少: PSO算法需要调整的参数较少,易于调试。

四、基于PSO优化BP神经网络的PID控制算法

基于PSO优化BP神经网络的PID控制算法将PSO算法应用于BP神经网络的权值和阈值优化,从而克服BP神经网络易陷入局部极小值、训练速度慢等缺点。其基本思路是:

  1. **初始化BP神经网络:**确定BP神经网络的结构(层数、神经元数量),并随机初始化权值和阈值。

  2. **初始化粒子群:**将BP神经网络的权值和阈值作为粒子群中的粒子,随机初始化粒子的位置(代表BP神经网络的权值和阈值)和速度。

  3. **计算适应度值:**将粒子的位置(即BP神经网络的权值和阈值)代入BP神经网络,训练网络,并根据控制系统的性能指标(如超调量、调节时间、稳态误差)计算适应度值。适应度值可以定义为系统性能指标的函数,例如:

    fitness = w1 * overshoot + w2 * settling_time + w3 * steady_state_error 

    其中,w1、w2、w3为权重系数,用于调整不同性能指标的重要性。

  4. **更新pbest和gbest:**根据适应度值更新每个粒子的历史最优位置和群体最优位置。

  5. **更新速度和位置:**根据PSO算法的公式更新粒子的速度和位置。

  6. **判断终止条件:**如果满足终止条件(如达到最大迭代次数或适应度值满足要求),则结束搜索,并将群体最优位置所对应的BP神经网络作为最终的PID参数整定器,否则返回步骤3。

⛳️ 运行结果

🔗 参考文献

[1] 朴海国,王志新,张华强.基于合作粒子群算法的PID神经网络非线性控制系统[J].控制理论与应用, 2009, 26(12).DOI:10.7641/j.issn.1000-8152.2009.12.ccta080998.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值