✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
高光谱图像(Hyperspectral Images, HSIs)以其在连续、窄波段内捕获目标光谱信息的能力,为地物精细识别、分类和目标检测提供了强大的工具。然而,在获取HSIs的过程中,由于传感器自身特性、成像环境以及传输过程中的干扰,不可避免地会引入各种噪声。这些噪声不仅影响HSIs的视觉质量,还会降低后续应用(如地物分类、丰度估计等)的精度。因此,高光谱图像去噪成为图像处理领域一个重要的研究课题。传统的去噪方法主要针对高斯噪声或椒盐噪声等单一噪声类型,但实际应用中,HSIs往往受到多种噪声的混合影响,例如高斯噪声、脉冲噪声和条带噪声等。针对这种混合噪声的复杂情况,需要更有效的去噪算法。本文探讨一种基于空间光谱总变化(Spatial-Spectral Total Variation, SSTV)的混合噪声去除方法,旨在更有效地减少高光谱图像中的混合噪声,并提升图像质量。
总变化(Total Variation, TV)是一种被广泛应用于图像去噪的模型,它通过限制图像梯度的总和来达到平滑噪声的效果,同时保留图像的边缘信息。TV模型最早应用于二维图像去噪,其基本思想是假设自然图像具有分段光滑的特性,即大部分区域是平滑的,只有在边缘或纹理处存在显著的梯度变化。通过最小化图像梯度的总和,可以有效地去除噪声,同时避免过度平滑图像,保持图像的结构信息。
然而,直接将二维TV模型应用于高光谱图像会忽略HSIs固有的三维结构特性,即空间相关性和光谱相关性。空间相关性指的是相邻像素通常具有相似的光谱特征,而光谱相关性则表明同一像素在相邻波段的光谱值也具有一定的连续性。因此,为了充分利用HSIs的三维信息,需要在传统的TV模型中融入空间和光谱信息,从而构建空间光谱总变化(SSTV)模型。
SSTV模型的核心思想是同时约束图像在空间和光谱两个维度上的总变化。具体而言,可以将SSTV模型分解为空间总变化(Spatial Total Variation, STV)和光谱总变化(Spectral Total Variation, SpTV)两部分。STV用于约束相邻像素之间的光谱差异,确保空间平滑性;而SpTV则用于约束同一像素在相邻波段之间的差异,保证光谱连续性。通过同时最小化STV和SpTV,可以有效地去除HSIs中的噪声,并保留其重要的空间和光谱特征。
与其他传统的HSIs去噪方法相比,基于SSTV的去噪方法具有以下优势:
- 能够有效处理混合噪声:
SSTV模型不仅可以有效地抑制高斯噪声,还可以通过适当的参数调整,对脉冲噪声和条带噪声等非高斯噪声进行有效的去除。这是因为总变化模型本身对噪声的类型并不敏感,它主要通过约束图像的梯度变化来达到去噪的目的。
- 保留图像的空间和光谱细节:
SSTV模型充分利用了HSIs的空间和光谱相关性,因此在去噪的同时可以更好地保留图像的边缘、纹理和光谱特征。这对于后续的地物分类、目标检测等应用至关重要。
- 适应性强:
SSTV模型可以通过调整参数来适应不同噪声水平和不同HSIs的特点。例如,可以通过增加TV的正则化系数来增强去噪效果,或者通过调整STV和SpTV的权重来平衡空间和光谱平滑度。
当然,基于SSTV的HSIs去噪方法也存在一些挑战:
- 计算复杂度高:
由于SSTV模型需要同时考虑空间和光谱两个维度的总变化,因此其计算复杂度相对较高。这在处理大规模HSIs时可能会成为一个瓶颈。
- 参数选择困难:
SSTV模型通常需要设置一些参数,例如正则化系数和STV与SpTV的权重。这些参数的选择对去噪效果有很大的影响,但通常需要通过实验或交叉验证等方法进行确定。
⛳️ 运行结果
🔗 参考文献
[1] 李文青.数据驱动的高光谱遥感影像混合噪声深度学习去除方法研究[D].武汉大学,2020.
[2] 谢婷.基于低秩稀疏约束的高光谱遥感图像复原方法研究[J].[2025-02-22].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇