✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 随着环境问题日益突出和能源结构的转型,电动汽车(Electric Vehicle, EV)作为一种清洁、高效的交通工具,受到了广泛的关注和推广。然而,大规模电动汽车的接入对电网的稳定运行和电力系统的负荷平衡带来了新的挑战。本文深入研究了基于削峰填谷的电动汽车多目标优化调度策略,旨在通过合理调度电动汽车的充放电行为,实现电网负荷的平滑化、电动汽车用户的经济效益最大化以及电网运行的安全稳定。本文首先分析了电动汽车接入电网对电力系统的影响,并阐述了削峰填谷策略的必要性。随后,构建了以电网负荷方差最小化、电动汽车用户充电成本最小化和电网电压稳定性最大化为目标的多目标优化模型。最后,选择合适的优化算法,对所提出的模型进行求解,并通过仿真实验验证了该策略的有效性和可行性。
关键词: 电动汽车,削峰填谷,多目标优化,智能调度,负荷平衡,电压稳定性
1. 引言
近年来,全球气候变化日益严重,传统燃油汽车带来的环境污染问题日益突出。在应对能源危机和环境保护的双重压力下,电动汽车作为一种绿色环保的交通工具,得到了世界各国的重视和大力推广。随着电动汽车保有量的快速增长,大规模电动汽车接入电网已成为一种必然趋势。然而,电动汽车的大规模无序充电行为会对电网的稳定运行和电力系统的负荷平衡产生显著的影响。一方面,大量电动汽车集中在用电高峰期充电,会加剧电网的峰谷差,导致电网负荷压力过大,甚至可能引发电网故障;另一方面,电动汽车的充电行为具有随机性和不确定性,会对电网的电压稳定性和电能质量产生不利影响。因此,如何合理调度电动汽车的充放电行为,实现电网负荷的平滑化、电动汽车用户的经济效益最大化以及电网运行的安全稳定,已成为当前电力系统研究的热点和难点。
针对上述问题,国内外学者进行了大量的研究。其中,削峰填谷策略被认为是一种有效的解决方法。削峰填谷策略通过引导电动汽车在用电低谷期充电,在用电高峰期放电(V2G, Vehicle-to-Grid),从而实现电网负荷的平滑化,提高电网的利用率,降低发电成本。然而,传统的削峰填谷策略往往只考虑电网负荷的优化,忽略了电动汽车用户的利益和电网的电压稳定性。因此,本文提出了一种基于削峰填谷的电动汽车多目标优化调度策略,旨在综合考虑电网、用户和电网的安全稳定等多方面因素,实现电动汽车的智能调度。
2. 电动汽车接入电网的影响分析
电动汽车作为一种可控的负荷,其接入电网对电力系统的影响是复杂而多方面的。主要体现在以下几个方面:
- 电网负荷特性改变:
大规模电动汽车的无序充电会导致电网负荷曲线的峰谷差增大。如果电动汽车集中在用电高峰期充电,会进一步加剧电网的负荷压力,可能导致电网过载,甚至引发电网故障。
- 电网电压稳定性影响:
电动汽车的充电行为具有随机性和不确定性,会导致电网电压波动,降低电网的电压稳定性。尤其是在配电网中,由于其网络结构较为薄弱,对电压稳定性的影响更为显著。
- 配电网潮流分布改变:
电动汽车的接入会改变配电网的潮流分布,可能导致部分线路的潮流过载,影响配电网的安全运行。
- 电能质量影响:
大规模电动汽车的充电过程中会产生谐波,影响电能质量,对其他电力设备造成干扰。
因此,对电动汽车进行合理的调度是至关重要的,可以有效地缓解上述问题,实现电动汽车与电网的协调发展。
3. 基于削峰填谷的多目标优化模型构建
为了实现电网负荷的平滑化、电动汽车用户的经济效益最大化以及电网运行的安全稳定,本文构建了一个多目标优化模型。该模型以电网负荷方差最小化、电动汽车用户充电成本最小化和电网电压稳定性最大化为目标函数,以满足用户出行需求、电网运行约束和电动汽车自身约束为约束条件。
3.1 目标函数
-
电网负荷方差最小化: 该目标函数旨在平滑电网的负荷曲线,减小电网的峰谷差,提高电网的利用率。其数学表达式如下:
r
min F_1 = \frac{1}{T} \sum_{t=1}^{T} (P(t) - \overline{P})^2
其中,
P(t)
表示时刻t
的电网总负荷,\overline{P}
表示电网平均负荷,T
表示调度周期。 -
电动汽车用户充电成本最小化: 该目标函数旨在降低电动汽车用户的充电成本,提高用户的经济效益。其数学表达式如下:
scss
min F_2 = \sum_{i=1}^{N} \sum_{t=1}^{T} C(t) \cdot P_{EV,i}(t) \cdot \Delta t
其中,
N
表示电动汽车的数量,C(t)
表示时刻t
的电价,P_{EV,i}(t)
表示电动汽车i
在时刻t
的充电功率,\Delta t
表示时间间隔。 -
电网电压稳定性最大化: 该目标函数旨在提高电网的电压稳定性,保证电网的安全运行。本文采用电压稳定指标(Voltage Stability Index, VSI)来衡量电网的电压稳定性。其数学表达式如下:
r
max F_3 = \frac{1}{T} \sum_{t=1}^{T} VSI(t)
其中,
VSI(t)
表示时刻t
的电网电压稳定指标,其具体计算公式根据不同的电网结构和节点选取而有所不同。通常选择配电网中最薄弱节点的电压稳定指标作为目标。
3.2 约束条件
-
用户出行需求约束: 电动汽车的调度必须满足用户的出行需求,保证用户在出行时有足够的电量。其数学表达式如下:
arduino
SOC_{i}(t_{end}) \geq SOC_{i,min}
其中,
SOC_{i}(t_{end})
表示电动汽车i
在离开时刻t_{end}
的荷电状态,SOC_{i,min}
表示电动汽车i
需要的最小荷电状态,以满足用户的出行需求。 -
电网运行约束: 电动汽车的调度不能超过电网的运行限制,保证电网的安全运行。其数学表达式包括:
- 线路潮流约束:
S_{l}(t) \leq S_{l,max}
,其中S_{l}(t)
表示时刻t
线路l
的潮流,S_{l,max}
表示线路l
的最大潮流。 - 节点电压约束:
V_{i,min} \leq V_{i}(t) \leq V_{i,max}
,其中V_{i}(t)
表示时刻t
节点i
的电压,V_{i,min}
和V_{i,max}
分别表示节点i
的最小和最大电压。 - 配电网容量约束:
所有电动汽车的总充电功率不能超过配电网的容量限制。
- 线路潮流约束:
-
电动汽车自身约束: 电动汽车的调度必须满足自身的技术限制。其数学表达式包括:
- 充电功率约束:
0 \leq P_{EV,i}(t) \leq P_{EV,i,max}
,其中P_{EV,i}(t)
表示电动汽车i
在时刻t
的充电功率,P_{EV,i,max}
表示电动汽车i
的最大充电功率。 - 荷电状态约束:
SOC_{i,min} \leq SOC_{i}(t) \leq SOC_{i,max}
,其中SOC_{i}(t)
表示电动汽车i
在时刻t
的荷电状态,SOC_{i,min}
和SOC_{i,max}
分别表示电动汽车i
的最小和最大荷电状态。
- 充电功率约束:
3.3 模型转化
由于上述模型是一个多目标优化问题,需要将其转化为单目标优化问题进行求解。常用的转化方法包括加权法、ε-约束法等。本文选择加权法,将多个目标函数线性加权合并为一个目标函数。其数学表达式如下:
ini
min F = w_1 F_1 + w_2 F_2 - w_3 F_3
其中,w_1
、w_2
和w_3
分别表示三个目标函数的权重系数,其满足w_1 + w_2 + w_3 = 1
。权重系数的选择需要根据实际情况进行调整,以反映不同目标的重要性。
4. 优化算法选择
针对所提出的多目标优化模型,需要选择合适的优化算法进行求解。常用的优化算法包括遗传算法(Genetic Algorithm, GA)、粒子群算法(Particle Swarm Optimization, PSO)、模拟退火算法(Simulated Annealing, SA)等。由于遗传算法具有良好的全局搜索能力和鲁棒性,适合于求解复杂的多目标优化问题,本文选择遗传算法作为优化算法。
遗传算法的基本步骤包括:
- 初始化种群:
随机生成一定数量的个体,每个个体代表一个电动汽车调度方案。
- 计算适应度:
根据目标函数计算每个个体的适应度值。
- 选择:
根据个体的适应度值,选择优秀的个体进入下一代。
- 交叉:
对选择出来的个体进行交叉操作,产生新的个体。
- 变异:
对新产生的个体进行变异操作,增加种群的多样性。
- 更新种群:
用新产生的个体替换原来的个体,形成新的种群。
- 判断终止条件:
如果满足终止条件(例如达到最大迭代次数),则算法结束,否则返回步骤2。
⛳️ 运行结果
🔗 参考文献
[1] 吕志鹏,宋振浩,刘海涛,等.一种电动汽车有序充放电多目标优化调度方法和装置:CN202310533634.2[P].CN116632887A[2025-03-05].
[2] 胡澄.面向智能楼宇的电动汽车优化调度策略研究[D].东南大学,2020.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇