✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:全球定位系统(GPS)作为无人机(UAV)导航定位的核心技术,易受到非移动GPS干扰器的攻击,导致定位精度下降甚至失效。为了应对这一挑战,本文针对无人机平台在非移动GPS干扰环境下,研究了多种基于多传感器融合的位置估计算法的性能。通过对惯性测量单元(IMU)、视觉里程计(VIO)、气压计、磁力计等传感器信息的有效融合,能够在GPS信号受损或丢失时,维持无人机定位的精度和可靠性。本文重点分析了扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)以及基于粒子滤波(PF)等多种融合算法在不同干扰强度下的性能表现,并探讨了不同传感器组合方案对定位精度的影响。最后,总结了多传感器融合算法在非移动GPS干扰环境下的优势与局限性,并展望了未来的发展方向。
关键词:无人机;GPS干扰;多传感器融合;位置估计;扩展卡尔曼滤波;无迹卡尔曼滤波;粒子滤波
1. 引言
无人机技术近年来发展迅猛,在各个领域得到了广泛应用,包括测绘、农业、物流、安防等。精准的定位与导航是无人机实现自主飞行、完成复杂任务的前提。GPS作为一种成本低廉、应用广泛的卫星导航系统,长期以来是无人机定位的主要手段。然而,GPS信号的脆弱性使其容易受到恶意干扰。近年来,非移动GPS干扰器日益普及,对无人机飞行安全构成严重威胁。在GPS信号受干扰的情况下,无人机定位精度会显著下降,甚至完全失效,导致飞行轨迹偏离、任务失败甚至坠机等事故。
为了提高无人机在GPS干扰环境下的抗干扰能力和定位可靠性,研究基于多传感器融合的位置估计方法具有重要的理论价值和应用意义。多传感器融合技术利用不同传感器的互补特性,通过信息融合算法,能够在部分传感器失效的情况下,利用其他传感器的信息进行补偿,从而维持系统的定位精度。
本文针对无人机平台在非移动GPS干扰环境下,研究了多种基于多传感器融合的位置估计算法的性能。通过分析不同融合算法在不同干扰强度下的定位精度、鲁棒性和计算复杂度,为无人机在复杂电磁环境下安全稳定运行提供理论指导。
2. 相关工作
近年来,针对GPS干扰环境下的无人机定位问题,国内外学者进行了大量的研究。主要的研究方向包括:
- 抗干扰技术:
针对GPS干扰信号的特性,设计抗干扰滤波器,抑制干扰信号的影响,提高GPS接收机的抗干扰能力。例如,基于空时自适应处理(STAP)的抗干扰算法,可以有效抑制方向性干扰信号。
- GPS欺骗检测与防御:
研究GPS欺骗信号的检测方法,识别虚假的GPS信号,并采取相应的防御措施,防止无人机受到欺骗攻击。例如,基于密码学的GPS欺骗检测方法,可以有效识别伪造的GPS信号。
- 多传感器融合定位:
利用其他传感器(如IMU、视觉里程计、气压计、磁力计等)的信息,与GPS信息进行融合,提高定位精度和鲁棒性。
在多传感器融合定位方面,常用的算法包括卡尔曼滤波及其变种(EKF、UKF、CKF)、粒子滤波(PF)、互补滤波等。这些算法在不同应用场景下具有不同的优缺点。
- 卡尔曼滤波(KF)及其变种:
KF及其变种是最常用的传感器融合算法之一。它通过迭代的方式,根据系统的动态模型和测量模型,估计系统的状态。EKF将非线性系统线性化,然后应用标准KF算法。UKF使用无迹变换来近似非线性函数,精度更高。CKF使用Cubature规则进行积分近似,在某些情况下具有更高的精度。
- 粒子滤波(PF):
PF是一种基于蒙特卡洛方法的非线性滤波算法。它通过使用大量粒子来表示系统的后验概率分布,适用于非线性、非高斯系统。
- 互补滤波:
互补滤波是一种简单的线性滤波算法。它通过对不同传感器的信号进行加权平均,实现信息融合。互补滤波的优点是计算量小,易于实现,但精度相对较低。
已有的研究表明,多传感器融合算法可以在一定程度上提高无人机在GPS干扰环境下的定位精度。然而,不同融合算法的性能受多种因素的影响,包括干扰强度、传感器精度、系统模型等。因此,需要对不同融合算法在不同干扰环境下的性能进行深入分析,为无人机在复杂电磁环境下选择合适的定位方案提供依据。
3. 多传感器融合算法模型
为了实现无人机在非移动GPS干扰环境下的精准定位,本文研究了基于IMU、视觉里程计(VIO)、气压计、磁力计等多传感器融合的位置估计方法。
3.1 传感器模型
-
IMU (惯性测量单元): IMU提供无人机的角速度和线加速度信息。由于IMU存在漂移误差,因此需要与其他传感器进行融合,以消除漂移误差。IMU的测量模型可以表示为:
ini
ω_m = ω + b_ω + n_ω
a_m = a + b_a + n_a其中,
ω_m
和a_m
分别表示IMU测量的角速度和线加速度;ω
和a
分别表示真实的角速度和线加速度;b_ω
和b_a
分别表示角速度和线加速度的偏差;n_ω
和n_a
分别表示角速度和线加速度的噪声。 -
VIO (视觉里程计): VIO通过分析无人机携带的摄像头采集的图像序列,估计无人机的位姿变化。VIO的优点是能够提供高精度的相对位置信息,但容易受到光照变化、纹理缺失等因素的影响。VIO的测量模型可以表示为:
ini
z_vio = h_vio(x) + n_vio
其中,
z_vio
表示VIO的测量值;h_vio(x)
表示VIO的测量函数,将系统状态x
映射到VIO的测量空间;n_vio
表示VIO的测量噪声。 -
气压计: 气压计测量大气压力,可以用于估计无人机的高度。气压计的精度受到天气变化、气流等因素的影响。气压计的测量模型可以表示为:
ini
z_alt = h_alt(x) + n_alt
其中,
z_alt
表示气压计的测量值;h_alt(x)
表示气压计的测量函数,将系统状态x
映射到气压计的测量空间;n_alt
表示气压计的测量噪声。 -
磁力计: 磁力计测量地球磁场强度,可以用于估计无人机的航向角。磁力计容易受到周围电磁环境的干扰。磁力计的测量模型可以表示为:
ini
z_mag = h_mag(x) + n_mag
其中,
z_mag
表示磁力计的测量值;h_mag(x)
表示磁力计的测量函数,将系统状态x
映射到磁力计的测量空间;n_mag
表示磁力计的测量噪声。
3.2 系统状态方程
无人机的状态向量可以表示为:
r
x = [p^T v^T q^T b_ω^T b_a^T]^T
其中,p
表示无人机的位置;v
表示无人机的速度;q
表示无人机的姿态;b_ω
表示陀螺仪的偏差;b_a
表示加速度计的偏差。
系统的状态方程可以表示为:
ini
x_k+1 = f(x_k, u_k) + w_k
其中,x_k
表示k
时刻的状态向量;u_k
表示k
时刻的控制输入;f(x_k, u_k)
表示系统的状态转移函数;w_k
表示系统噪声。
3.3 基于不同滤波算法的融合策略
本文研究了三种常用的滤波算法:扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)以及基于粒子滤波(PF)。
-
扩展卡尔曼滤波(EKF): EKF是一种基于线性化的卡尔曼滤波算法,适用于非线性系统。EKF通过对非线性函数进行泰勒展开,将其线性化,然后应用标准的卡尔曼滤波算法。EKF的优点是计算量小,易于实现,但精度相对较低,尤其是在非线性程度较高的系统中。
-
无迹卡尔曼滤波(UKF): UKF是一种基于无迹变换的卡尔曼滤波算法,适用于非线性系统。UKF通过选择一组Sigma点来近似系统的概率分布,然后将这些Sigma点通过非线性函数进行变换,计算变换后的均值和方差。UKF的优点是精度比EKF高,但计算量也比EKF大。
-
粒子滤波(PF): PF是一种基于蒙特卡洛方法的非线性滤波算法。PF通过使用大量粒子来表示系统的后验概率分布,每个粒子代表系统状态的一个可能的取值。PF的优点是适用于非线性、非高斯系统,但计算量非常大,需要大量的粒子才能保证精度。
⛳️ 运行结果
🔗 参考文献
[1] 徐玉.微小型无人直升机飞控平台与姿态融合算法研究[D].浙江大学,2008.
[2] 高媛.最优和自校正多传感器观测融合滤波方法和算法研究[D].黑龙江大学[2025-03-08].DOI:10.7666/d.y1696136.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇