✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
近年来,随着全球能源危机的加剧和环境污染问题的日益严重,光伏(PV)发电作为一种清洁、可再生能源备受关注。然而,光伏发电的输出功率受到光照强度、温度等环境因素的显著影响,呈现非线性和时变特性。为充分利用太阳能资源,提高光伏系统的发电效率,最大功率点跟踪(Maximum Power Point Tracking, MPPT)技术成为了光伏发电系统中的关键技术。MPPT技术旨在实时追踪光伏组件的输出功率最大点,并通过控制逆变器等电力电子设备,使光伏系统始终运行在最佳工作状态。
在众多的MPPT算法中,微分电导法(Incremental Conductance Method, INC)因其简单易懂、精度较高、对系统扰动较小等优点而被广泛应用。然而,传统的微分电导法在实际应用中仍然存在一些局限性。例如,在光照强度快速变化时,传统的微分电导法可能无法快速准确地跟踪到最大功率点,导致发电效率下降。此外,固定的步长设置也难以兼顾跟踪速度和稳态精度之间的矛盾。为了克服传统微分电导法的不足,基于优化自适应微分电导算法的最大功率点跟踪技术应运而生,成为目前研究的热点方向。
本篇文章将深入探讨基于优化自适应微分电导算法的最大功率点跟踪技术,旨在阐述该技术的核心思想、优势、以及具体的优化策略,并对其未来发展趋势进行展望。
一、传统微分电导法的原理与局限性
微分电导法是基于光伏组件输出功率曲线的斜率为零时,光伏系统运行在最大功率点的原理而设计的。该方法通过测量光伏组件的电压(V)和电流(I),计算其微分电导(dI/dV)和瞬时电导(I/V),并根据两者之间的关系来判断最大功率点的位置。具体而言:
-
当 dI/dV + I/V > 0 时,表明当前工作点位于最大功率点的左侧,需要增大工作电压V;
-
当 dI/dV + I/V < 0 时,表明当前工作点位于最大功率点的右侧,需要减小工作电压V;
-
当 dI/dV + I/V = 0 时,表明当前工作点位于最大功率点,此时保持电压V不变。
尽管传统微分电导法具有实现简单、控制逻辑清晰等优点,但其在实际应用中也存在以下几个主要局限性:
- 跟踪速度受限:
传统微分电导法通常采用固定的步长来进行电压调整。当光照强度快速变化时,固定的步长可能导致跟踪速度不足,无法及时捕捉到新的最大功率点,造成能量损失。
- 稳态精度不高:
为了提高跟踪速度,传统微分电导法通常会采用较大的步长。然而,较大的步长会导致系统在最大功率点附近发生震荡,影响稳态精度,降低发电效率。
- 抗干扰能力较弱:
当光伏系统受到噪声干扰时,微分电导的计算可能会出现偏差,导致错误的跟踪方向。
- 无法应对复杂工况:
在光照强度突变、阴影遮挡等复杂工况下,光伏组件的输出功率曲线可能会呈现多个局部最大值。传统的微分电导法容易陷入局部最大值,无法找到全局最大功率点。
二、优化自适应微分电导算法的核心思想与优势
为了克服传统微分电导法的不足,优化自适应微分电导算法应运而生。该算法的核心思想是在传统微分电导法的基础上,通过引入优化策略和自适应调整机制,实现跟踪速度、稳态精度和抗干扰能力的综合提升。具体而言,优化自适应微分电导算法通常包含以下几个关键要素:
- 自适应步长调整:
优化自适应微分电导算法不再采用固定的步长,而是根据光照强度变化、跟踪误差等因素,动态调整步长的大小。当光照强度变化较快或跟踪误差较大时,采用较大的步长以提高跟踪速度;当光照强度变化较慢或跟踪误差较小时,采用较小的步长以提高稳态精度。常见的自适应步长调整方法包括基于模糊逻辑的步长调整、基于神经网络的步长调整、以及基于扰动观测的步长调整等。
- 优化搜索策略:
为了避免陷入局部最大值,优化自适应微分电导算法通常会采用一些优化搜索策略,如粒子群优化算法(PSO)、遗传算法(GA)、蚁群算法(ACO)等。这些优化算法可以全局搜索光伏组件的输出功率曲线,找到全局最大功率点。
- 滤波降噪处理:
为了提高抗干扰能力,优化自适应微分电导算法通常会对电压和电流的测量值进行滤波降噪处理。常见的滤波方法包括移动平均滤波、中值滤波、Kalman滤波等。
- 智能判断与修正:
优化自适应微分电导算法通常会引入智能判断机制,判断当前工作点是否处于稳定状态或是否受到干扰。当系统处于稳定状态时,可以减小步长以提高稳态精度;当系统受到干扰时,可以采取相应的修正措施,如重新初始化算法或增大步长以快速摆脱干扰。
相比于传统的微分电导法,优化自适应微分电导算法具有以下显著优势:
- 更高的跟踪速度:
自适应步长调整机制可以根据光照强度变化动态调整步长的大小,从而实现更快的跟踪速度。
- 更高的稳态精度:
较小的步长可以有效抑制系统在最大功率点附近的震荡,从而实现更高的稳态精度。
- 更强的抗干扰能力:
滤波降噪处理可以有效消除噪声干扰,从而提高算法的鲁棒性。
- 更好的全局寻优能力:
优化搜索策略可以避免陷入局部最大值,从而找到全局最大功率点。
- 更强的适应性:
智能判断与修正机制可以根据系统状态动态调整控制策略,从而提高算法的适应性
⛳️ 运行结果
🔗 参考文献
[1] 袁晓玲,陈宇.自适应权重粒子群算法在阴影光伏发电最大功率点跟踪(MPPT)中的应用[J].中国电力, 2013, 46(010):85-90.DOI:10.3969/j.issn.1004-9649.2013.10.016.
[2] 林虹江,周步祥,冉伊,等.基于遗传优化BP神经网络算法的光伏系统最大功率点跟踪研究[J].电测与仪表, 2015, 52(5):6.DOI:10.3969/j.issn.1001-1390.2015.05.008.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇