【状态估计】卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波、库图尔卡尔曼滤波、M-估计、鲁棒立方卡尔曼滤波器实现无人机位置跟踪、迎角和俯仰角跟踪, 方向角度跟踪等研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机(Unmanned Aerial Vehicle, UAV)技术在近些年来取得了显著发展,其应用领域日益广泛,涵盖了物流运输、环境监测、农业植保、灾害救援等多个方面。实现无人机安全、稳定、高效的自主飞行,离不开精确可靠的状态估计。状态估计的目标是根据传感器量测数据,实时准确地估计无人机的位置、速度、姿态等状态信息,为后续的控制和决策提供基础。然而,实际飞行环境中,无人机传感器易受噪声干扰,量测模型存在非线性,以及可能出现的异常值等因素,对状态估计的精度和鲁棒性提出了严峻挑战。因此,研究高效且鲁棒的无人机状态估计方法具有重要的理论意义和实际应用价值。

本文旨在对无人机状态估计领域常用的卡尔曼滤波(Kalman Filter, KF)及其衍生算法,包括扩展卡尔曼滤波(Extended Kalman Filter, EKF)、无迹卡尔曼滤波(Unscented Kalman Filter, UKF)、库图尔卡尔曼滤波(Cubature Kalman Filter, CKF),以及鲁棒M-估计和鲁棒立方卡尔曼滤波(Robust Cubature Kalman Filter, RCKF)等方法进行综述,并探讨其在无人机位置跟踪、迎角和俯仰角跟踪、方向角度跟踪等方面的应用和研究进展。

1. 卡尔曼滤波及其局限性

卡尔曼滤波是一种最优线性估计器,适用于线性系统和高斯噪声环境。其基本思想是利用系统状态方程和量测方程,通过递归的方式,根据先验估计值和量测值,不断修正状态变量的估计值,从而实现最优估计。卡尔曼滤波算法简洁高效,易于实现,在无人机状态估计的早期阶段得到了广泛应用。

然而,实际的无人机系统往往是高度非线性的,例如,无人机的运动模型和姿态解算模型都涉及复杂的三角函数运算。将卡尔曼滤波直接应用于非线性系统,会导致较大的估计误差甚至发散。此外,卡尔曼滤波对噪声的统计特性要求较高,必须假设噪声服从高斯分布。但在实际环境中,无人机传感器可能会受到各种干扰,导致噪声分布偏离高斯分布,出现异常值,进而影响估计精度。

2. 非线性卡尔曼滤波方法

为了解决卡尔曼滤波在非线性系统中的局限性,研究人员提出了多种非线性卡尔曼滤波算法,其中最为常用的包括扩展卡尔曼滤波、无迹卡尔曼滤波和库图尔卡尔曼滤波。

  • 扩展卡尔曼滤波(EKF): EKF通过将非线性函数进行泰勒展开,线性化系统状态方程和量测方程,然后应用卡尔曼滤波算法。EKF的优点是实现简单,计算量较小。然而,由于泰勒展开的截断误差,以及线性化过程带来的近似误差,EKF的精度往往不高,尤其是在非线性程度较高的系统中。此外,EKF需要计算雅可比矩阵,增加了算法的复杂度,也可能导致奇异性问题。

  • 无迹卡尔曼滤波(UKF): UKF采用无迹变换(Unscented Transformation, UT),通过选取一组Sigma点来近似状态分布,然后将这些Sigma点通过非线性函数进行传播,得到估计值的统计特性。UKF避免了线性化过程,因此具有更高的精度,尤其是在非线性程度较高的系统中。与EKF相比,UKF不需要计算雅可比矩阵,实现更加简单。然而,UKF的计算量相对较大,对硬件资源要求较高。

  • 库图尔卡尔曼滤波(CKF): CKF采用库图尔变换(Cubature Kalman Filter, CKF),也称为球面径向卡尔曼滤波(Spherical Radial Cubature Kalman Filter, SRCKF),通过选取一组Cubature点来近似状态分布。CKF与UKF类似,都避免了线性化过程,但与UKF不同的是,CKF基于球面径向积分准则,具有更高的精度和更好的数值稳定性。CKF的计算量介于EKF和UKF之间,是一种兼顾精度和效率的非线性滤波算法。

3. 鲁棒性卡尔曼滤波方法

为了提高卡尔曼滤波对异常值的鲁棒性,研究人员提出了多种鲁棒卡尔曼滤波算法,其中常用的方法包括基于M-估计的鲁棒卡尔曼滤波和鲁棒立方卡尔曼滤波。

  • 基于M-估计的鲁棒卡尔曼滤波: M-估计是一种常用的鲁棒估计方法,其基本思想是利用具有抗差性的权重函数,降低异常值对估计结果的影响。将M-估计应用于卡尔曼滤波中,可以有效地抑制异常值对状态估计的影响,提高算法的鲁棒性。常用的M-估计权重函数包括Huber函数、Tukey函数等。

  • 鲁棒立方卡尔曼滤波(RCKF): RCKF是将M-估计和立方卡尔曼滤波相结合的算法。其基本思想是利用M-估计来修正量测残差,从而降低异常值对滤波的影响,然后利用立方卡尔曼滤波进行状态估计。RCKF结合了M-估计的鲁棒性和立方卡尔曼滤波的精度,是一种高效且鲁棒的状态估计方法。

4. 无人机状态估计应用研究

以上述卡尔曼滤波及其改进算法为基础,研究人员在无人机状态估计的各个方面进行了深入研究,包括位置跟踪、迎角和俯仰角跟踪、方向角度跟踪等。

  • 位置跟踪: 位置跟踪是无人机状态估计的基础,通常利用全球定位系统(GPS)、惯性测量单元(IMU)、视觉传感器等多种传感器进行融合。卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波等算法都被广泛应用于无人机的位置跟踪中。近年来,基于深度学习的位置跟踪方法也逐渐兴起,利用神经网络提取图像特征,实现高精度的定位。

  • 迎角和俯仰角跟踪: 迎角和俯仰角是描述无人机姿态的重要参数,对无人机的控制和稳定至关重要。通常利用IMU中的加速度计和陀螺仪数据,结合磁力计数据,进行姿态解算。卡尔曼滤波及其改进算法可以有效地融合传感器数据,提高迎角和俯仰角的估计精度。

  • 方向角度跟踪: 方向角度,也称为偏航角,是描述无人机方向的重要参数。方向角度的估计通常依赖于磁力计数据。然而,磁力计易受电磁干扰,导致方向角度估计误差较大。卡尔曼滤波及其改进算法可以有效地抑制磁力计噪声,提高方向角度的估计精度。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值