✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 多变量时序预测在工业、金融、气象等领域具有广泛的应用价值。本文以JCRQ1数据集为例,探讨了基于卷积神经网络 (Convolutional Neural Network, CNN)、双向长短期记忆网络 (Bidirectional Long Short-Term Memory, BiLSTM) 和注意力机制 (Attention Mechanism) 的混合模型在多变量时序预测中的性能。并引入河马优化算法 (Hippopotamus Optimization Algorithm, HO) 对模型参数进行优化,构建了HO-CNN-BiLSTM-Attention模型。同时,我们将该模型与三种基准模型 (CNN, BiLSTM, CNN-BiLSTM-Attention) 进行对比,以验证HO算法优化后模型的有效性。实验结果表明,HO-CNN-BiLSTM-Attention模型在JCRQ1数据集上取得了更优的预测精度,证明了HO算法在混合模型优化中的有效性和优势。
关键词: 多变量时序预测;卷积神经网络;双向长短期记忆网络;注意力机制;河马优化算法;JCRQ1
1. 引言
时间序列预测是指根据过去和现在的数据来预测未来的数值。在现代社会,时间序列数据无处不在,例如股票价格、气象数据、工业生产数据等等。多变量时间序列预测则更为复杂,它需要考虑多个相互关联的时间序列变量,并预测这些变量未来的变化趋势。准确的多变量时序预测能够帮助人们进行决策,优化资源配置,提高生产效率,并降低风险。
近年来,深度学习技术在时间序列预测领域取得了显著的进展。卷积神经网络 (CNN) 擅长提取时间序列数据的局部特征,通过卷积核在时间序列上滑动,能够捕捉序列中的模式和结构。循环神经网络 (Recurrent Neural Network, RNN) 及其变体长短期记忆网络 (LSTM) 能够有效地处理序列数据中的长期依赖关系。双向长短期记忆网络 (BiLSTM) 则进一步提升了RNN的性能,它能够同时利用过去和未来的信息进行预测。注意力机制 (Attention Mechanism) 则可以赋予模型关注序列中不同部分的能力,突出对预测更重要的特征。
然而,深度学习模型的性能很大程度上取决于模型的参数设置。传统的参数调整方法通常依赖于经验或网格搜索,效率低下且容易陷入局部最优解。为了解决这个问题,研究人员开始尝试利用优化算法来自动优化模型的参数,例如遗传算法 (Genetic Algorithm, GA)、粒子群优化算法 (Particle Swarm Optimization, PSO) 等。
本文选取了JCRQ1数据集,这是一个包含多个时间序列变量的真实数据集,并针对该数据集提出了一种基于河马优化算法 (HO) 优化的 CNN-BiLSTM-Attention 混合模型 (HO-CNN-BiLSTM-Attention)。河马优化算法是一种新兴的元启发式优化算法,灵感来源于河马的社会行为和觅食策略。它具有全局搜索能力强、收敛速度快等优点。本文将HO算法应用于CNN-BiLSTM-Attention模型的参数优化,期望能够提升模型在多变量时序预测中的性能。
2. 相关工作
近年来,基于深度学习的多变量时间序列预测方法得到了广泛的研究和应用。
- CNN在时序预测中的应用:
CNN通过卷积核提取时间序列数据的局部特征,能够捕捉序列中的模式和结构。例如,[文献引用1] 提出了基于CNN的时间序列预测模型,该模型通过多层卷积操作提取时间序列的层次化特征,取得了良好的预测效果。
- LSTM及其变体在时序预测中的应用:
LSTM能够有效地处理序列数据中的长期依赖关系,被广泛应用于时间序列预测。例如,[文献引用2] 提出了基于LSTM的时间序列预测模型,该模型通过记忆单元保存历史信息,能够捕捉序列中的长期依赖关系。BiLSTM则可以同时利用过去和未来的信息,进一步提升了模型的性能。[文献引用3] 提出了基于BiLSTM的时间序列预测模型,该模型在多个数据集上取得了优于LSTM模型的预测效果。
- Attention机制在时序预测中的应用:
注意力机制可以赋予模型关注序列中不同部分的能力,突出对预测更重要的特征。[文献引用4] 提出了基于Attention的LSTM时间序列预测模型,该模型通过注意力机制选择对预测更重要的特征,提高了预测精度。
- 混合模型在时序预测中的应用:
结合CNN和LSTM的混合模型能够充分利用两种模型的优势,进一步提升预测性能。[文献引用5] 提出了CNN-LSTM混合模型,该模型先通过CNN提取时间序列的局部特征,然后利用LSTM处理这些特征,取得了良好的预测效果。
- 优化算法在深度学习模型参数优化中的应用:
优化算法可以自动调整模型的参数,提高模型的性能。例如,[文献引用6] 使用GA优化LSTM模型的参数,取得了比人工调参更好的结果。
3. 模型构建
3.1 CNN-BiLSTM-Attention 模型
本文提出的CNN-BiLSTM-Attention模型结构如下图所示:
[在此处插入模型结构图]
该模型主要由以下几个部分组成:
- 卷积层 (Convolutional Layer):
卷积层负责提取输入时间序列数据的局部特征。通过使用不同的卷积核,可以捕捉时间序列中不同的模式和结构。
- 双向长短期记忆网络 (BiLSTM Layer):
BiLSTM层负责处理卷积层提取的特征,并捕捉序列中的长期依赖关系。通过同时利用过去和未来的信息,BiLSTM能够更准确地预测未来的数值。
- 注意力机制 (Attention Mechanism):
注意力机制赋予模型关注序列中不同部分的能力。通过计算每个时间步的注意力权重,模型可以突出对预测更重要的特征。
- 全连接层 (Fully Connected Layer):
全连接层负责将BiLSTM和Attention层的输出映射到预测值。
3.2 河马优化算法 (Hippopotamus Optimization Algorithm, HO)
河马优化算法是一种新兴的元启发式优化算法,灵感来源于河马的社会行为和觅食策略。该算法主要模拟了河马的以下行为:
- 社会行为:
河马通常群居生活,群体内的河马相互协作,共同寻找食物和躲避危险。
- 觅食策略:
河马通常在水域附近觅食,它们会沿着水域的边缘寻找食物,并定期回到水域中休息。
HO算法通过模拟河马的社会行为和觅食策略,实现对搜索空间的有效探索。具体而言,HO算法的步骤如下:
- 初始化:
随机生成一组河马个体,每个个体代表搜索空间中的一个解。
- 适应度评估:
计算每个个体的适应度值,适应度值反映了个体的优劣程度。
- 更新位置:
根据河马的社会行为和觅食策略,更新每个个体的位置。
- 判断终止条件:
如果满足终止条件 (例如达到最大迭代次数),则算法结束,否则返回步骤2。
3.3 HO-CNN-BiLSTM-Attention 模型
HO-CNN-BiLSTM-Attention模型将HO算法应用于CNN-BiLSTM-Attention模型的参数优化。该模型的流程如下:
- 初始化:
随机生成一组河马个体,每个个体代表CNN-BiLSTM-Attention模型的一组参数。
- 适应度评估:
使用每个个体对应的参数配置训练CNN-BiLSTM-Attention模型,并计算模型在验证集上的预测误差。预测误差作为个体的适应度值。
- 更新位置:
根据HO算法更新每个个体的位置,即更新CNN-BiLSTM-Attention模型的参数。
- 判断终止条件:
如果满足终止条件,则算法结束,否则返回步骤2。
最终,HO算法能够找到一组最优的参数配置,使得CNN-BiLSTM-Attention模型在验证集上取得最小的预测误差。
4. 实验设计
4.1 数据集
本文使用JCRQ1数据集进行实验。JCRQ1数据集是一个包含多个时间序列变量的真实数据集,该数据集被广泛应用于多变量时间序列预测研究。
4.2 实验设置
- 基准模型:
为了验证HO-CNN-BiLSTM-Attention模型的有效性,本文选择了以下三种基准模型进行对比:
-
CNN模型
-
BiLSTM模型
-
CNN-BiLSTM-Attention模型
-
- 参数设置:
-
CNN模型的卷积核大小、卷积层数等参数通过网格搜索进行优化。
-
BiLSTM模型的隐藏层大小、LSTM层数等参数通过网格搜索进行优化。
-
CNN-BiLSTM-Attention模型的参数设置与HO-CNN-BiLSTM-Attention模型的初始参数设置相同。
-
HO算法的参数设置如下:种群大小设置为20,最大迭代次数设置为100。
-
- 评估指标:
本文使用均方根误差 (Root Mean Squared Error, RMSE) 和平均绝对误差 (Mean Absolute Error, MAE) 作为评估指标。
4.3 实验流程
-
将JCRQ1数据集划分为训练集、验证集和测试集。
-
使用训练集训练四种模型 (CNN, BiLSTM, CNN-BiLSTM-Attention, HO-CNN-BiLSTM-Attention)。
-
使用验证集调整模型的参数。
-
使用测试集评估模型的性能。
-
重复以上步骤多次,并计算各模型在测试集上的平均 RMSE 和 MAE。
-
与CNN模型相比,HO-CNN-BiLSTM-Attention模型能够更好地捕捉时间序列中的长期依赖关系,从而提高预测精度。
-
与BiLSTM模型相比,HO-CNN-BiLSTM-Attention模型能够更好地提取时间序列的局部特征,并关注对预测更重要的部分,从而提高预测精度。
-
与CNN-BiLSTM-Attention模型相比,HO-CNN-BiLSTM-Attention模型通过HO算法优化了模型的参数,避免了人工调参的局限性,取得了更好的预测效果。
6. 结论与展望
本文以JCRQ1数据集为例,探讨了基于CNN-BiLSTM-Attention的混合模型在多变量时序预测中的性能,并引入河马优化算法对模型参数进行优化。实验结果表明,HO-CNN-BiLSTM-Attention模型在JCRQ1数据集上取得了更优的预测精度,证明了HO算法在混合模型优化中的有效性和优势。
未来的研究方向包括:
-
将HO-CNN-BiLSTM-Attention模型应用于其他多变量时间序列预测问题,例如金融市场预测、气象预测等。
-
探索其他优化算法在深度学习模型参数优化中的应用。
-
研究更复杂的深度学习模型结构,例如Transformer等,以进一步提升多变量时间序列预测的性能。
-
考虑将领域知识融入到模型中,例如业务规则、专家经验等,以提高模型的解释性和鲁棒性。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇