【遗传算法(GA)和模拟退火(SA)对翼型升阻比进行优化】基于神经网络和无导数算法的翼型优化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

翼型作为飞行器的关键组成部分,其气动性能直接影响飞行器的整体效率和安全性。优化翼型设计,提升其升阻比(升力系数与阻力系数之比)具有重要的工程意义。传统的翼型优化方法,如直接气动仿真和梯度优化算法,往往计算量巨大,耗时漫长。近年来,结合神经网络(Neural Network, NN)的无导数算法(Derivative-Free Optimization, DFO)在翼型优化领域展现出强大的潜力,能在保证精度的前提下显著降低计算成本。本文将重点探讨如何利用神经网络构建翼型气动性能预测模型,并在此基础上,运用遗传算法(Genetic Algorithm, GA)和模拟退火算法(Simulated Annealing, SA)两种无导数优化算法对翼型升阻比进行优化,并比较两种算法的优缺点。

一、基于神经网络的翼型气动性能预测

传统的计算流体力学(Computational Fluid Dynamics, CFD)仿真虽然能够提供精确的气动性能数据,但对于翼型优化而言,需要进行大量的迭代计算,时间成本过高。因此,采用神经网络构建翼型气动性能预测模型是高效翼型优化的关键步骤。

神经网络本质上是一种非线性映射,能够学习翼型几何参数与气动性能之间的复杂关系。对于翼型气动性能预测,通常采用多层感知机(Multilayer Perceptron, MLP)或卷积神经网络(Convolutional Neural Network, CNN)。输入特征通常是翼型的几何参数,例如控制翼型形状的关键参数,如Bezier曲线控制点坐标、B样条曲线控制点坐标、厚度分布等。输出特征则是翼型的气动性能,如升力系数、阻力系数、压力分布等。

训练神经网络模型需要大量的翼型数据。这些数据可以通过以下两种方式获取:

  • CFD仿真数据:

     通过大量的CFD仿真,生成不同翼型几何参数组合下的气动性能数据。这保证了训练数据的精度,但计算成本依然较高。

  • 实验数据:

     利用已有的翼型实验数据,如风洞实验结果,可以构建训练集。然而,实验数据往往有限,难以覆盖所有可能的翼型设计空间。

在训练过程中,需要合理选择神经网络的结构和参数,例如层数、每层神经元数量、激活函数、学习率等。同时,需要对训练数据进行预处理,例如归一化处理,以提高训练效率和模型精度。经过充分训练的神经网络模型能够快速准确地预测翼型的气动性能,为后续的翼型优化提供可靠的依据。

二、遗传算法优化翼型升阻比

遗传算法是一种模拟生物进化过程的全局优化算法,其核心思想是通过选择、交叉和变异等遗传操作,逐步进化种群中的个体,最终找到最优解。在翼型优化中,可以将翼型的几何参数编码成基因,种群中的每个个体代表一个翼型设计方案。

利用遗传算法优化翼型升阻比的步骤如下:

  1. 初始化种群:

     随机生成一定数量的翼型设计方案,构成初始种群。

  2. 评估个体适应度:

     使用训练好的神经网络模型预测每个个体的升力系数和阻力系数,计算其升阻比作为适应度值。适应度值越高,表明该翼型设计方案越优。

  3. 选择操作:

     根据个体的适应度值,选择优秀的个体进入下一代。常用的选择方法包括轮盘赌选择、锦标赛选择等。

  4. 交叉操作:

     将选出的优秀个体进行交叉操作,产生新的个体。交叉操作模拟了生物的基因重组过程,有助于产生更优秀的后代。

  5. 变异操作:

     对新产生的个体进行变异操作,引入随机性,避免算法陷入局部最优解。

  6. 更新种群:

     将新产生的个体加入种群,淘汰适应度较低的个体,更新种群。

  7. 迭代循环:

     重复步骤2-6,直到满足终止条件,如达到最大迭代次数或找到满足要求的翼型设计方案。

遗传算法的优点在于全局搜索能力强,能够有效地探索复杂的翼型设计空间,找到全局最优解。然而,遗传算法的缺点在于收敛速度较慢,需要较长的迭代时间。此外,遗传算法的参数设置对优化结果影响较大,需要进行合理的参数调整。

三、模拟退火算法优化翼型升阻比

模拟退火算法是一种模拟金属退火过程的优化算法。其核心思想是在搜索过程中允许一定概率接受比当前解更差的解,从而跳出局部最优解。在翼型优化中,可以将翼型的几何参数作为状态变量,升阻比作为能量函数。

利用模拟退火算法优化翼型升阻比的步骤如下:

  1. 初始化状态:

     随机生成一个翼型设计方案作为初始状态。

  2. 计算能量:

     使用训练好的神经网络模型预测当前状态的升力系数和阻力系数,计算其升阻比的倒数作为能量值。升阻比越大,能量值越小。

  3. 扰动状态:

     对当前状态进行微小扰动,产生新的状态,例如对翼型几何参数进行微小改变。

  4. 计算能量变化:

     使用神经网络模型预测新状态的升力系数和阻力系数,计算其能量值,并计算能量变化量 ΔE。

  5. 判断接受:

     如果 ΔE < 0,即新状态的能量更低,则接受新状态。如果 ΔE > 0,则以概率 exp(-ΔE/T) 接受新状态,其中 T 是当前温度。温度 T 随着迭代的进行逐渐降低,模拟退火过程。

  6. 更新状态:

     如果接受新状态,则将当前状态更新为新状态。

  7. 降低温度:

     按照一定的降温策略降低温度 T。

  8. 迭代循环:

     重复步骤3-7,直到满足终止条件,如达到最大迭代次数或温度降低到足够低。

模拟退火算法的优点在于易于实现,对初始状态不敏感,能够有效地避免陷入局部最优解。然而,模拟退火算法的缺点在于搜索效率较低,需要进行大量的状态扰动和能量计算。此外,模拟退火算法的降温策略对优化结果影响较大,需要进行合理的参数调整。

四、遗传算法与模拟退火算法的比较

遗传算法和模拟退火算法都是常用的无导数优化算法,在翼型优化领域都有着广泛的应用。它们各有优缺点,适用于不同的优化场景。

⛳️ 运行结果

🔗 参考文献

[1] 王晓鹏,高正红.基于遗传算法的翼型气动优化设计[J].空气动力学学报, 2000, 18(3):6.DOI:10.3969/j.issn.0258-1825.2000.03.009.

[2] 琚亚平,张楚华.基于人工神经网络与遗传算法的风力机翼型优化设计方法[J].中国电机工程学报, 2009(20):6.DOI:CNKI:SUN:ZGDC.0.2009-20-018.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值