【机械臂路径规划】基于RRT算法实现三轴机械臂路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

机械臂作为一种重要的工业自动化设备,广泛应用于制造、医疗、物流等领域。其核心功能之一便是路径规划,旨在寻找从起点到目标点的最优或可行轨迹,同时避免与环境中障碍物的碰撞。本文将深入探讨基于快速扩展随机树(Rapidly-exploring Random Tree, RRT)算法实现三轴机械臂路径规划的方法,并分析其优势与局限。

一、路径规划的重要性与挑战

机械臂的路径规划问题本质上是在约束条件下寻找最优解。这些约束条件包括:

  • 运动学约束:

     机械臂自身的关节角度范围、速度、加速度等限制。

  • 动力学约束:

     机械臂负载能力、关节力矩限制等。

  • 环境约束:

     工作空间内存在的障碍物,如其他设备、工作台等。

在复杂的工业环境中,传统的路径规划方法,如A*算法、Dijkstra算法等,往往面临计算复杂度高、搜索效率低等问题,难以满足实时性和鲁棒性的要求。特别是对于具有高自由度的机械臂,其构型空间庞大,采用基于搜索的算法容易陷入局部最优,导致规划失败。因此,需要寻求一种能够高效地在复杂环境中找到可行路径的算法。

二、RRT算法原理与优势

RRT算法是一种基于随机采样的路径规划算法,其核心思想是通过随机生成节点,并不断扩展树结构,直至连接到目标点或到达一定的迭代次数。其主要步骤如下:

  1. 初始化:

     创建一个起始节点,将其添加到树结构中。

  2. 随机采样:

     在构型空间内随机生成一个节点,记为x_rand。

  3. 寻找最近邻节点:

     在树结构中寻找距离x_rand最近的节点,记为x_near。

  4. 扩展树结构:

     从x_near向x_rand方向扩展一定步长,生成新的节点x_new。

  5. 碰撞检测:

     检测x_new与环境中的障碍物是否发生碰撞。若发生碰撞,则放弃该节点,返回第2步。

  6. 添加节点:

     若未发生碰撞,则将x_new添加到树结构中,并连接x_near和x_new。

  7. 判断目标点是否可达:

     检测x_new是否足够接近目标点。若满足条件,则搜索成功,连接x_new和目标点,并提取路径;若未满足条件,则返回第2步。

  8. 迭代终止:

     若达到最大迭代次数仍未找到可行路径,则搜索失败。

RRT算法的优势在于:

  • 概率完备性:

     在迭代次数足够多的情况下,RRT算法能够以概率接近1找到可行路径。

  • 高效性:

     RRT算法通过随机采样,能够快速探索构型空间,避免了全局搜索的低效性。

  • 适用性广泛:

     RRT算法能够处理具有高自由度的机械臂路径规划问题,并适用于复杂的环境。

  • 易于实现:

     RRT算法的实现相对简单,易于理解和应用。

三、三轴机械臂路径规划实现

针对三轴机械臂的路径规划,可以采用以下步骤:

  1. 建立机械臂运动学模型: 建立机械臂的D-H参数,推导正逆运动学方程,实现从关节空间到笛卡尔空间的转换。

  2. 定义构型空间: 将三轴机械臂的关节角度作为构型空间的维度,定义每个关节角度的范围。

  3. 障碍物建模: 将工作空间中的障碍物进行建模,如使用三维点云、网格模型等。

  4. RRT算法实现:

    • 随机采样:

       在每个关节角度的范围内随机生成一个关节角度向量,作为x_rand。

    • 寻找最近邻节点:

       计算x_rand与树结构中所有节点的距离,选择距离最近的节点作为x_near。距离度量可以使用欧氏距离或加权欧氏距离,权重可以根据关节的特性进行调整。

    • 扩展树结构:

       从x_near向x_rand方向扩展一定步长,可以采用直线插值或更复杂的插值方法,生成新的关节角度向量x_new。步长大小需要根据机械臂的运动能力和环境的复杂程度进行调整。

    • 碰撞检测:

       将x_new通过正运动学方程转换为笛卡尔空间坐标,并检测机械臂的连杆与障碍物是否发生碰撞。碰撞检测可以使用基于距离的算法,如GJK算法或SAT算法。

    • 添加节点:

       若未发生碰撞,则将x_new添加到树结构中,并连接x_near和x_new。

    • 判断目标点是否可达:

       将x_new通过正运动学方程转换为笛卡尔空间坐标,并计算其与目标点之间的距离。若距离小于设定的阈值,则认为目标点可达。

    • 路径提取:

       从目标点开始,沿着树结构回溯到起始节点,得到一条可行的路径。

  5. 路径优化: RRT算法生成的路径往往不是最优的,可以采用路径平滑、路径优化等方法,进一步改善路径的质量。例如,可以采用shortcut算法,随机选择路径上的两个点,判断这两个点之间是否存在直线路径,若存在则用直线路径替换原始路径。

四、RRT算法的局限性与改进

RRT算法虽然具有诸多优点,但也存在一些局限性:

  • 概率完备性:

     RRT算法只能保证概率完备性,不能保证一定能找到可行路径,特别是在狭窄通道环境中。

  • 路径质量不高:

     RRT算法生成的路径往往不是最优的,需要进行后续的路径优化。

  • 参数敏感:

     RRT算法的性能受到参数设置的影响,如步长大小、最大迭代次数等。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值