【鲸鱼优化算法】基于多种群机制 种群进化策略的鲸鱼算法MEWOA附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

鲸鱼优化算法(Whale Optimization Algorithm, WOA)作为一种受到座头鲸狩猎行为启发的群智能优化算法,自提出以来便因其原理简洁、实现方便和寻优能力较强而受到广泛关注。然而,与许多基于群体的元启发式算法相似,WOA在处理复杂优化问题时,也面临着收敛速度慢、易陷入局部最优以及种群多样性后期衰减等挑战。为了克服这些不足,科研人员提出了各种改进策略,其中,基于多种群机制和种群进化策略的改进方法为算法的性能提升提供了新的思路。本文将深入探讨基于多种群机制和种群进化策略的鲸鱼算法(Multi-Population Evolutionary Whale Optimization Algorithm, MEWOA)的设计理念、实现细节及其潜在的优势和局限性。

引言

优化问题广泛存在于工程、科学研究、经济管理等诸多领域。从复杂的组合优化到连续函数的极值寻找,都对优化算法提出了严峻的挑战。传统的优化方法,如梯度下降、牛顿法等,往往依赖于问题的可导性和凸性,对于非线性、多模态、不可导等复杂问题显得力不从心。因此,基于生物群体行为的元启发式算法应运而生,它们通过模拟自然界中生物个体的协作与竞争,在没有问题结构信息的条件下,也能有效地探索解空间。

鲸鱼优化算法作为一种新兴的元启发式算法,模拟了座头鲸独特的“气泡网”捕食策略。该策略主要包括包围猎物、气泡网攻击和搜索猎物三个阶段。包围阶段模拟鲸鱼群体向最优解靠近;气泡网攻击阶段模拟鲸鱼通过螺旋路径和收缩包围圈捕食猎物;搜索阶段模拟鲸鱼随机搜索新的猎物。WOA凭借其直观的模型和相对较少的参数,在许多优化问题中展现了良好的性能。然而,随着问题复杂度的增加,标准的WOA也暴露了一些缺点。例如,在算法后期,种群趋于同质化,导致搜索能力下降,容易陷入局部最优,并且收敛速度受限。

为了增强WOA的全局搜索能力和局部开发能力,并克服其缺陷,引入多种群机制和种群进化策略成为一种自然的选择。多种群机制将整个种群划分为若干个子种群,每个子种群独立进行搜索,并定期或根据一定策略进行信息交流和个体迁移。这种并行搜索的方式可以增加算法对解空间的探索范围,降低陷入局部最优的风险。种群进化策略则借鉴了进化计算的思想,通过引入变异、交叉等操作,增加种群的多样性,增强算法的鲁棒性。将这两种策略相结合,形成基于多种群机制和种群进化策略的鲸鱼算法,旨在融合各自的优势,构建一个更强大、更鲁棒的优化框架。

MEWOA的设计理念与实现细节

MEWOA的设计核心在于将标准的WOA框架嵌入到多种群和种群进化的范式中。其基本思想是将整个种群划分为多个独立的子种群,每个子种群在一定程度上独立执行WOA的迭代过程。同时,在迭代过程中或特定的时间点,引入基于种群进化思想的操作,如子种群间的个体迁移、信息共享,以及在子种群内部或全局范围内进行变异和交叉等操作,以增强算法的全局探索和局部开发能力。

1. 多种群机制

MEWOA采用多种群机制,将初始种群随机划分为𝑁𝑝Np个子种群,每个子种群包含𝑁𝑠Ns个个体,总种群大小为𝑁=𝑁𝑝×𝑁𝑠N=Np×Ns。每个子种群独立地执行WOA的搜索过程,包括包围猎物、气泡网攻击和搜索猎物阶段。这种并行搜索的模式有以下优点:

  • 增加探索范围:

     每个子种群从不同的初始位置开始搜索,可以同时探索解空间的不同区域,从而增加发现全局最优解的可能性。

  • 降低陷入局部最优的风险:

     即使某个子种群陷入局部最优,其他子种群可能仍在探索其他区域,避免整个算法过早收敛到局部最优。

  • 提高鲁棒性:

     多种群机制使得算法对初始种群的分布和个体性能的差异不那么敏感。

子种群之间的信息交流和个体迁移是多种群机制的关键。常见的交流策略包括:

  • 定期迁移:

     每隔一定代数,子种群之间交换一定数量的个体。可以根据个体适应度进行迁移,例如将每个子种群的最优个体迁移到其他子种群,或者随机迁移一定数量的个体。

  • 竞争与合作:

     子种群之间可以进行竞争,例如根据子种群的最优适应度进行排名,表现好的子种群可以向表现差的子种群提供信息或个体。也可以进行合作,例如将所有子种群的最优个体汇总,并从中选择最优个体作为全局最优解,供所有子种群参考。

  • 混沌移民:

     引入混沌映射生成混沌序列,根据混沌序列决定个体迁移的方向和数量,增加迁移的随机性和多样性。

在MEWOA中,可以根据具体问题的特点和算法设计的侧重点,选择合适的交流策略。例如,为了增强全局探索能力,可以增加个体迁移的频率和数量;为了加强局部开发,可以更多地依赖子种群内部的WOA迭代。

2. 种群进化策略

除了多种群机制,MEWOA还引入了种群进化策略,旨在增强种群多样性,提升算法的寻优能力。借鉴遗传算法和差分进化的思想,可以引入以下操作:

  • 变异操作:

     对子种群中的个体或全局最优个体进行变异。变异可以采用高斯变异、柯西变异等方式,在个体当前位置附近产生新的位置,增加跳出局部最优的可能性。变异的强度(例如高斯变异的标准差)可以随迭代次数衰减,以平衡探索和开发。

  • 交叉操作:

     对子种群中的个体进行交叉操作,例如将两个个体的一部分基因进行交换,产生新的个体。交叉操作有助于组合不同个体的优点,生成更优的解。交叉策略可以采用单点交叉、多点交叉、均匀交叉等。

  • 精英策略:

     将每个子种群的最优个体或全局最优个体保留到下一代,避免最优解在迭代过程中丢失。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值