CEEMDAN-Kmeans-VMD-PLO-Transformer多元时序预测,双分解+一区极光优化+Transformer!

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时序数据广泛存在于各个领域,如金融、气象、电力负荷、交通流量等。对这些数据进行精确预测具有重要的理论意义和实际应用价值。传统的时序预测方法,如ARIMA、指数平滑等,往往难以捕捉复杂非线性关系和非平稳特性。近年来,随着机器学习和深度学习技术的发展,基于这些技术的新型时序预测模型展现出强大的能力。然而,单一模型往往也存在局限性,例如对噪声敏感、特征提取能力不足等。因此,结合多种模型的优势,构建混合预测模型成为提高预测精度的一种有效途径。

本文旨在探讨一种基于双重分解、一区极光优化算法和Transformer的多元时序混合预测模型:CEEMDAN-Kmeans-VMD-PLO-Transformer。该模型充分利用了信号分解技术在处理非平稳和非线性数据方面的优势,结合聚类算法对不同特性分量的划分,引入优化算法对Transformer模型超参数进行寻优,最终利用Transformer强大的序列建模能力进行预测。本文将深入剖析该模型的理论基础、实现过程以及潜在优势。

1. 研究背景与动机

多元时序数据往往具有复杂的内在结构,例如趋势、季节性、周期性以及随机噪声等。这些成分相互叠加,使得直接对原始数据进行预测变得困难。信号分解技术可以将原始复杂信号分解为一系列相对平稳或具有特定频率特性的分量,从而降低预测难度。常用的信号分解方法包括经验模态分解(EMD)、集合经验模态分解(EEMD)、完全自适应噪声的集合经验模态分解(CEEMDAN)以及变分模态分解(VMD)等。

CEEMDAN作为EEMD的改进,通过在每次分解过程中加入不同的白噪声,能够有效抑制模态混叠现象,并且能够产生更少且更平稳的模态分量。VMD则是一种非递归的模态变分和信号处理方法,它通过构建和求解变分问题,将信号分解为一系列具有紧凑带宽的本征模函数(IMF)。与基于经验的EMD系列方法不同,VMD具有更坚实的数学基础和更好的鲁棒性,尤其在处理非线性信号时表现出色。

尽管CEEMDAN和VMD都能对信号进行分解,但它们侧重于不同的信号特性。CEEMDAN更强调信号在不同时间尺度上的分解,而VMD则更注重信号在不同频率尺度上的分离。将这两种分解方法结合,形成双重分解,有望更全面地捕捉时序数据的复杂特征。例如,可以先用CEEMDAN对原始信号进行初步分解,然后对分解得到的每个分量再进行VMD分解,或者反之。本文提出的模型采用CEEMDAN和VMD的双重分解策略,以期更有效地对原始多元时序数据进行特征提取和降噪。

在将原始数据分解为多个子序列后,这些子序列可能具有不同的特性,例如高频噪声、低频趋势或中间频率的周期性成分。对这些不同特性的子序列采用统一的预测模型可能无法达到最优效果。聚类算法能够根据数据的相似性将数据点分组,从而实现对子序列的分类。K-means算法作为一种经典的聚类算法,因其简单高效而广受欢迎。通过K-means聚类,可以将CEEMDAN和VMD分解得到的多个子序列根据其相似性(例如频率、振幅、平稳性等)划分为不同的类别,然后对每个类别或每个子序列应用合适的预测模型。

Transformer模型是近年来在自然语言处理领域取得巨大成功的神经网络模型,其基于自注意力机制的架构能够有效地捕捉序列中的长距离依赖关系。与传统的循环神经网络(RNN)或长短期记忆网络(LSTM)不同,Transformer能够并行处理序列数据,大大提高了训练效率。将Transformer应用于时序预测领域,可以利用其强大的序列建模能力来预测分解后子序列的未来值。

然而,Transformer模型的性能很大程度上依赖于其超参数的选择,如学习率、注意力头数、隐藏层维度、dropout率等。人工调参过程繁琐且耗时,且难以找到最优组合。因此,引入优化算法对Transformer模型超参数进行寻优是必要的。极光优化算法(Polar Bear Optimization Algorithm, PLO)是一种受北极熊狩猎行为启发的仿生智能优化算法。其独特的觅食和防御机制使其在解决复杂优化问题上表现出良好的性能。将其应用于Transformer模型的超参数寻优,有望找到更优的参数组合,从而提升预测精度。本文选择PLO作为优化算法,构建PLO-Transformer模块,对Transformer模型的关键超参数进行优化。

将双重分解(CEEMDAN和VMD)、K-means聚类、PLO优化以及Transformer模型相结合,构建CEEMDAN-Kmeans-VMD-PLO-Transformer混合预测模型,旨在充分发挥各组件的优势,实现对多元时序数据的更精确预测。该模型的核心思想是“双重分解+一区极光优化+Transformer”,其中“一区极光优化”特指利用极光优化算法对Transformer模型进行优化。

2. 模型架构与实现细节

CEEMDAN-Kmeans-VMD-PLO-Transformer模型的主要架构可以描述如下:

2.1 双重分解层:CEEMDAN和VMD

首先,对原始多元时序数据进行预处理,例如缺失值填充、异常值处理等。然后,对每个维度的时序数据分别进行CEEMDAN分解。CEEMDAN将原始信号分解为一系列本征模函数(IMF)和一个残差项。这些IMF代表了信号在不同时间尺度上的波动。

接下来,对CEEMDAN分解得到的每个IMF和残差项,再次进行VMD分解。VMD将每个IMF/残差分解为一系列具有紧凑带宽的模态分量(Mode Components)。这一步进一步细化了信号的分解,将其在频率域上进行分离。例如,如果原始时序数据有 𝑁N 个维度,每个维度通过CEEMDAN分解得到 𝑀𝐶MC 个IMF和1个残差,那么总共会有 𝑁×(𝑀𝐶+1)N×(MC+1) 个分量。再对这 𝑁×(𝑀𝐶+1)N×(MC+1) 个分量中的每一个进行VMD分解,假设每个分量通过VMD分解得到 𝑀𝑉MV 个模态分量,那么最终将得到 𝑁×(𝑀𝐶+1)×𝑀𝑉N×(MC+1)×MV 个更精细的子序列。这种双重分解策略能够更全面地捕捉原始信号的复杂特征。

2.2 聚类层:K-means

双重分解后产生的子序列数量可能非常庞大,且它们具有不同的特性。为了避免对每个子序列都单独训练一个预测模型,同时也为了利用具有相似特性的子序列进行联合预测,引入K-means聚类。

对所有双重分解得到的子序列,提取其特征,例如均值、方差、峰度、峭度、能量、频率中心、带宽、相关性等。然后利用K-means算法根据这些特征将子序列聚类到 𝐾K 个簇中。聚类前需要确定合适的聚类簇数 𝐾K,可以利用肘部法则、轮廓系数等方法进行选择。通过聚类,可以将具有相似频率、振幅或平稳性等特性的子序列归为一类。

2.3 优化与预测层:PLO-Transformer

对于每个聚类簇或每个子序列(取决于聚类策略),构建PLO-Transformer预测模型。在这里,“一区极光优化”体现在利用PLO算法对Transformer模型的超参数进行寻优。

对于每个聚类簇或子序列,将其作为输入序列送入Transformer模型进行预测。Transformer模型的核心是自注意力机制和前馈神经网络。其输入经过位置编码后送入多头自注意力层,然后通过残差连接和层归一化,再经过前馈神经网络,重复堆叠多层。最后通过一个线性层输出预测结果。

PLO算法的目标是找到一组最优的Transformer超参数,使得预测模型的性能达到最优(例如,均方根误差RMSE最小)。PLO算法的搜索空间是Transformer模型的超参数取值范围。PLO算法通过模拟北极熊的觅食和防御行为,在参数空间中进行搜索和迭代优化。具体过程包括:

  • 初始化种群:

     随机生成一组北极熊个体,每个个体代表一组Transformer超参数。

  • 适应度评估:

     对于每个个体(即一组超参数),用该超参数配置的Transformer模型在训练集上进行训练,并在验证集上评估其预测性能(例如,计算RMSE)。将RMSE作为个体的适应度值,适应度值越低表示超参数组合越优。

  • 位置更新:

     根据北极熊的觅食和防御策略更新个体的位置。觅食策略模拟北极熊寻找食物的过程,倾向于向适应度值更高的区域移动;防御策略模拟北极熊规避危险的过程,避免进入适应度值较低的区域。

  • 迭代寻优:

     重复适应度评估和位置更新过程,直到达到预设的迭代次数或找到满足条件的超参数组合。

  • 最优参数:

     迭代结束后,适应度值最低的个体所对应的超参数即为最优参数组合。

利用PLO寻优得到的最佳超参数配置来训练Transformer模型,对该聚类簇或子序列的未来值进行预测。

2.4 重构与最终预测

对每个聚类簇或子序列的预测结果进行整合,得到原始多元时序数据的每个维度的预测结果。如果采用的是对每个子序列单独进行预测,则直接将分解前的维度对应的所有子序列的预测结果相加,得到该维度的最终预测结果。如果采用的是对每个聚类簇进行预测,则需要将每个聚类簇的预测结果按照其包含的子序列进行分配,并最终将同一维度下的子序列预测结果相加。

3. 模型优势与创新点

CEEMDAN-Kmeans-VMD-PLO-Transformer模型结合了多种技术的优势,具有以下潜在优势和创新点:

  • 双重分解增强特征提取能力:

     结合CEEMDAN和VMD两种分解方法,能够从不同的角度对原始复杂信号进行分解,更全面地捕捉信号的非线性和非平稳特性,降低预测难度。

  • K-means聚类实现分而治之:

     通过K-means算法对分解后的子序列进行聚类,可以将具有相似特性的子序列归为一类,针对不同的类别采用更合适的预测策略或模型,提高了模型的灵活性和预测精度。同时也降低了模型的复杂度,避免对每个子序列都进行独立训练。

  • PLO优化提升Transformer性能:

     利用PLO智能优化算法对Transformer模型的超参数进行自动寻优,避免了人工调参的盲目性和耗时性,能够找到更优的参数组合,充分发挥Transformer的序列建模能力,提升预测精度。

  • Transformer强大的序列建模能力:

     Transformer模型能够有效地捕捉时序数据中的长距离依赖关系,克服了传统模型在处理长序列时的不足。

  • 混合模型协同增效:

     将信号分解、聚类、优化算法和深度学习模型有机结合,形成一个协同工作的混合预测框架,充分发挥各组件的优势,实现“1+1>2”的效果。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

图片

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值