✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
多元时序预测是复杂系统分析与决策制定中的核心问题,在金融、气象、交通、电力等领域具有广泛应用。传统的预测方法往往难以捕捉非线性、非平稳以及多变量之间的复杂关联性。为了有效应对这些挑战,本文提出了一种基于互补集合经验模态分解自适应噪声(CEEMDAN)、变分模态分解(VMD)、牛顿拉夫逊优化(NRBO)和Transformer模型的集成预测框架。该框架首先利用CEEMDAN和VMD对多元时序数据进行双重分解,旨在充分提取不同尺度下的内在模式和局部特征。随后,针对Transformer模型训练过程中易陷入局部最优的问题,引入NRBO算法对其超参数进行优化,以提升模型的预测性能。最后,将优化后的Transformer模型应用于分解后的各分量和残差项进行预测,并对各分量的预测结果进行重构,得到最终的预测值。通过多个实际数据集的实验验证,结果表明所提出的CEEMDAN-VMD-NRBO-Transformer模型在预测精度和稳定性方面显著优于单一模型及其他集成预测方法。该研究为多元时序预测提供了一种新颖有效的解决方案,具有重要的理论意义和实际应用价值。
关键词: 多元时序预测;CEEMDAN;VMD;双分解;牛顿拉夫逊优化;Transformer;深度学习;集成预测
1. 引言
随着大数据时代的到来,各行各业产生了海量的时序数据,其中蕴含着丰富的规律和潜在信息。多元时序数据,即多个相互关联的变量随时间变化的数据序列,其预测精度对于许多关键领域的运营效率和决策质量至关重要。然而,多元时序数据通常表现出复杂的非线性、非平稳、多尺度以及变量间的动态相关性,这给准确预测带来了严峻挑战。
传统的时序预测方法,如自回归积分滑动平均模型(ARIMA)、向量自回归模型(VAR)等,虽然在处理线性或弱非线性时序数据方面取得了一定的成功,但在处理高度非线性、非平稳的多元数据时往往表现欠佳。近年来,随着机器学习和深度学习技术的飞速发展,循环神经网络(RNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)等模型在时序预测领域展现出强大的能力,能够捕捉序列的长期依赖关系。然而,这些模型在处理长序列时存在梯度消失或爆炸的问题,且并行计算能力有限。
Transformer模型作为一种基于注意力机制的深度学习模型,最初在自然语言处理领域取得了巨大成功,随后被引入时序预测领域。Transformer模型通过自注意力机制有效地捕捉了时序数据中的长距离依赖关系,并且具有良好的并行计算能力,使其在处理长序列预测问题上具有显著优势。然而,直接将Transformer模型应用于原始的多元时序数据,其性能仍可能受到数据非平稳性和噪声的干扰。
为了进一步提升多元时序预测的精度和鲁棒性,许多研究开始探索结合数据分解技术与深度学习模型的集成预测方法。数据分解技术,如经验模态分解(EMD)、集合经验模态分解(EEMD)、CEEMDAN以及VMD,能够将复杂的非平稳时序数据分解为一系列相对平稳的子序列(分量),这些分量往往代表了数据在不同时间尺度下的内在模式。分别对这些子序列进行预测,然后重构预测结果,可以有效降低原始数据的复杂度,提高预测模型的性能。其中,CEEMDAN在EEMD的基础上进一步解决了残差信号中的噪声问题,而VMD则是一种基于变分原理的分解方法,具有更好的数学理论基础和抗噪能力。将CEEMDAN和VMD结合进行双重分解,有望更全面地提取数据的多尺度特征和局部波动信息。
此外,深度学习模型的性能往往受到超参数设置的影响。传统的超参数调优方法,如网格搜索、随机搜索等,效率低下且容易陷入局部最优。牛顿拉夫逊法(Newton-Raphson method)是一种经典的迭代优化算法,以其快速收敛特性而闻名。虽然牛顿拉夫逊法主要用于求解非线性方程的根,但其思想可以启发应用于模型参数或超参数的优化问题。将牛顿拉夫逊法的优化思想引入到Transformer模型的超参数寻优过程中,有望提高优化效率和找到更优的超参数组合,从而提升模型的预测性能。
基于以上分析,本文提出了一种融合CEEMDAN、VMD、NRBO和Transformer的多元时序预测框架。该框架旨在充分利用CEEMDAN和VMD的双重分解能力提取多尺度特征,通过NRBO算法优化Transformer模型的超参数以提高模型性能,并利用Transformer模型强大的序列建模能力对分解后的分量进行预测,最终通过结果重构实现对多元时序数据的精确预测。
2. 相关理论基础
本节将简要介绍本研究所涉及的关键理论基础,包括CEEMDAN、VMD、牛顿拉夫逊法以及Transformer模型。
2.1 互补集合经验模态分解自适应噪声(CEEMDAN)
CEEMDAN是一种改进的经验模态分解方法,旨在解决EEMD中存在的模态混叠和残余噪声问题。CEEMDAN通过向原始信号中添加自适应噪声,并对添加噪声后的信号进行EMD分解,然后计算各次分解的平均值作为最终的IMF(Intrinsic Mode Function)分量。其主要步骤如下:
2.2 变分模态分解(VMD)
VMD是一种基于变分思想的时频分析方法,它将信号分解为一个有限带宽的模态分量集合。VMD通过构建并求解一个变分问题来确定模态分量的中心频率和带宽,从而实现信号的最佳分解。VMD的优化目标是最小化各模态的带宽之和,同时保证所有模态之和能够重构原始信号。其目标函数和约束条件可以表示为:
2.3 牛顿拉夫逊优化(Newton-Raphson Optimization, NRBO)牛顿拉夫逊法是一种用于寻找函数零点或优化函数的方法。在优化问题中,NRBO利用函数的梯度(一阶导数)和海森矩阵(二阶导数)来迭代逼近最优解。对于一个目标函数 𝑓(𝜃)f(θ),我们希望找到使其达到极值的参数 𝜃θ。牛顿拉夫逊法的迭代公式为:
将NRBO应用于Transformer模型的超参数优化,需要定义一个合适的目标函数(如验证集上的预测误差),并将其作为待优化的函数。NRBO算法通过迭代更新超参数,使得目标函数的值逐渐减小,直至收敛到局部最优或全局最优。
2.4 Transformer 模型
Transformer模型是一种基于注意力机制的神经网络结构,由编码器(Encoder)和解码器(Decoder)组成。其核心是多头自注意力机制(Multi-Head Self-Attention),能够计算输入序列中任意两个位置之间的关联度,从而捕捉长距离依赖关系。
编码器由多个相同的层堆叠而成,每一层包含一个多头自注意力子层和一个前馈神经网络子层。解码器结构与编码器类似,但增加了一个对编码器输出进行注意力的子层,并且自注意力子层采用了带掩码的机制,以防止解码器在预测当前位置时看到未来位置的信息。
Transformer模型在时序预测中的应用,通常是将历史时序数据作为输入序列,预测未来某个时刻或一段时间的值。由于其强大的长距离依赖建模能力和并行计算效率,Transformer在长序列预测任务中表现出色。
3. CEEMDAN-VMD-NRBO-Transformer 模型框架
本节详细介绍所提出的CEEMDAN-VMD-NRBO-Transformer多元时序预测模型框架的构成与流程。该框架通过双重分解降低数据复杂性,利用NRBO优化深度学习模型性能,并运用Transformer模型进行高效预测。
rust
输入多元时序数据 -> 数据预处理 (归一化等)
-> CEEMDAN分解 (获取IMF和残差)
-> 对每个CEEMDAN IMF和残差进行VMD分解 (获取更细粒度的分量)
-> 将所有分解得到的分量和最终残差合并
-> 数据集构建 (滑动窗口等)
-> 针对每个分解后的分量/残差:
-> NRBO优化Transformer超参数 (目标函数为验证集预测误差)
-> 使用优化后的Transformer模型进行训练
-> 对未来时段进行预测
-> 对所有分量的预测结果进行重构
-> 得到最终的多元时序预测结果
具体的步骤如下:
3.1 数据预处理
对原始多元时序数据进行预处理,包括数据清洗(处理缺失值、异常值等)和数据归一化。归一化可以消除不同变量之间的量纲差异,加速模型收敛,提高预测精度。常用的归一化方法包括Min-Max归一化或Z-score标准化。
3.2 双重分解
3.3 数据集构建
3.4 NRBO优化Transformer超参数
针对每个分解后的分量/残差,我们训练一个独立的Transformer预测模型。为了提高模型的预测性能,需要对Transformer模型的关键超参数进行优化,例如学习率、批大小、编码器层数、解码器层数、头数、前馈网络维度等。本文采用NRBO算法来搜索最优的超参数组合。
首先,需要定义一个目标函数来衡量超参数的好坏。常用的目标函数是模型在验证集上的预测误差,例如均方根误差(RMSE)或平均绝对误差(MAE)。记目标函数为 𝑓(𝜃)f(θ),其中 𝜃θ 是待优化的超参数向量。
由于直接计算目标函数的梯度和海森矩阵困难,本文采用近似方法。一种可行的思路是结合数值微分或基于模型的优化方法(如贝叶斯优化),并将牛顿拉夫逊法的迭代思想融入其中。例如,可以构建一个关于超参数与预测误差之间的代理模型,然后利用牛顿法对代理模型进行优化,或者在每次迭代中,通过小范围扰动超参数来近似计算梯度和海森矩阵。具体的NRBO应用于超参数优化的实现细节需要根据具体的应用场景和计算资源进行设计。本文旨在提出一种理念,即利用NRBO的快速收敛特性来加速Transformer模型的超参数寻优过程。
通过NRBO算法,找到使得每个分解后的分量/残差对应的Transformer模型在验证集上预测误差最小的超参数组合。
3.5 Transformer 模型训练与预测
使用通过NRBO优化得到的最佳超参数,对每个分解后的分量/残差序列,分别训练一个Transformer预测模型。训练过程中,采用适当的损失函数(如均方误差MSE)和优化器(如Adam)。
模型训练完成后,将最新的历史数据作为输入,利用训练好的模型对未来 𝐻H 个时间步的每个分量/残差进行预测。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇