✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
乳腺癌是威胁女性健康的重要疾病,早期诊断和准确分类对于提高患者生存率至关重要。医学影像学在乳腺癌诊断中扮演着核心角色,其中乳腺超声因其无创、便捷、经济等特点,成为临床上常用的检查手段。然而,超声图像往往存在噪声、伪影、边界模糊等问题,增加了人工解读的难度和主观性,可能导致漏诊或误诊。因此,开发自动化、智能化的超声图像分析方法具有重要的研究价值和临床意义。
近年来,基于机器学习和深度学习的医学图像分析技术取得了显著进展。这些方法通过提取图像特征并训练分类器,能够辅助医生进行诊断。在乳腺超声图像分析中,特征提取是关键步骤之一。传统图像特征,如纹理、形状和灰度特征,常常被用于描述肿块的形态和结构信息。Zernike矩作为一种全局特征描述子,因其旋转不变性和正交性,在图像识别和分类领域展现出优越性能。Zernike矩能够有效地描述图像的形状信息,对于分析乳腺肿块的形态特征具有潜在优势。
本文将探讨基于Zernike矩提取特征,并结合一种快速相反权重学习规则(Fast Opposite Weight Learning Rule, FOWLR)进行良恶性乳腺肿块的分类方法。该方法旨在提高乳腺癌诊断的准确性和效率。
一、 Zernike矩特征提取原理
在乳腺超声图像中,良性肿块通常呈规则的椭圆形或圆形,边缘清晰。恶性肿块则多呈不规则形状,边缘模糊或毛刺状。Zernike矩能够有效捕捉这些形状差异,为良恶性分类提供重要依据。例如,良性肿块的低阶Zernike矩模值较大,而恶性肿块由于形状不规则,其高阶Zernike矩模值可能相对较大。
二、 快速相反权重学习规则 (FOWLR)
在获得乳腺肿块的Zernike矩特征向量后,需要选择合适的分类器进行良恶性分类。传统的分类器,如支持向量机 (SVM)、逻辑回归等,在乳腺癌诊断中已有应用。然而,为了提高分类效率和性能,研究人员提出了许多新型学习算法。快速相反权重学习规则 (FOWLR) 是一种基于增强学习思想的快速学习算法,其核心思想是通过不断调整权重,使得学习到的模型能够快速收敛到最优解。
FOWLR算法通常应用于神经网络或其他线性模型的训练。其主要特点在于利用“相反权重”的概念来加速学习过程。具体而言,在每次迭代中,FOWLR 不仅根据当前的梯度信息更新权重,还会考虑与当前梯度方向相反的“相反梯度”,并根据特定的规则调整权重,从而更有效地探索解空间,避免陷入局部最优,并加速收敛。
将FOWLR应用于乳腺肿块分类任务,可以构建一个基于Zernike矩特征输入的分类模型。例如,可以构建一个简单的线性分类器或者一个多层感知机 (MLP),并使用FOWLR算法来训练模型的权重。训练过程中,模型接收Zernike矩特征向量作为输入,输出预测的类别(良性或恶性)。通过最小化分类误差的损失函数,并利用FOWLR更新权重,模型逐渐学习到如何根据Zernike矩特征区分良恶性肿块。
选择FOWLR作为学习规则的优势在于其声称的快速收敛性。在医疗诊断场景中,快速准确的模型训练和推理至关重要。如果FOWLR能够显著缩短模型的训练时间,同时保持或提高分类性能,那么它将具有重要的临床应用价值。
三、 基于Zernike矩和FOWLR的乳腺肿块分类流程
基于Zernike矩和FOWLR的乳腺肿块分类流程通常包括以下几个步骤:
-
数据收集与预处理: 收集标注好的乳腺超声图像数据集,包括良性和恶性肿块图像。对图像进行预处理,如噪声去除、对比度增强、图像分割(分割出肿块区域)。准确的肿块分割对于后续Zernike矩特征提取至关重要。
-
Zernike矩特征提取: 对分割出的肿块区域进行Zernike矩计算。选择合适的Zernike矩阶数,计算不同阶数和重复数的Zernike矩模值,构建特征向量。特征向量的维度取决于选择的最高阶数。
-
数据集划分: 将处理后的数据集划分为训练集、验证集和测试集。训练集用于训练分类模型,验证集用于调整模型参数和防止过拟合,测试集用于评估模型的最终性能。
-
模型构建与训练: 构建基于Zernike矩特征输入的分类模型,例如线性分类器或神经网络。使用训练集数据,并采用FOWLR算法训练模型的权重。在训练过程中,根据验证集上的性能调整FOWLR相关的参数,如学习率等。
-
模型评估: 使用测试集对训练好的模型进行评估。常用的评估指标包括准确率 (Accuracy)、敏感度 (Sensitivity)、特异度 (Specificity)、精确率 (Precision)、F1分数以及受试者工作特征曲线 (ROC曲线) 和曲线下面积 (AUC) 等。
-
临床应用: 将训练好的模型集成到乳腺超声图像分析系统中,辅助医生进行诊断。系统接收新的乳腺超声图像,自动进行肿块分割、特征提取和分类,并给出诊断建议。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇