✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
随着全球能源需求的增长和环保意识的增强,电力系统的环境经济调度问题日益受到关注。环境经济调度旨在同时优化发电成本和污染物排放,实现经济与环境效益的平衡。IEEE30 节点系统作为电力系统研究中的经典测试模型,具有广泛的代表性。多目标灰狼优化算法(Multi - Objective Grey Wolf Optimizer,MOGWO) 凭借其良好的全局搜索能力和收敛性能,为解决环境经济调度问题提供了新的思路。本文将深入研究基于 MOGWO 算法的 IEEE30 节点系统环境经济调度问题,通过构建合理的模型和算法,探寻最优调度方案。
二、环境经济调度问题概述
2.1 问题定义
环境经济调度是在满足电力系统各种约束条件下,合理安排各发电机组的出力,以实现发电成本最小化和污染物(如二氧化硫、氮氧化物、二氧化碳等)排放最小化的多目标优化问题 。在实际电力系统运行中,发电成本主要与燃料消耗、机组启停等因素相关,而污染物排放则与机组类型、发电功率等紧密相连。
2.2 研究意义
有效的环境经济调度能够降低发电企业的运营成本,提高经济效益,同时减少污染物排放,减轻对环境的压力,符合可持续发展的要求。对于 IEEE30 节点系统这样的典型电力网络,优化其环境经济调度方案,有助于提升整个系统的运行效率和环保水平,为实际电力系统的调度运行提供理论支持和实践参考 。
三、多目标灰狼优化算法(MOGWO)原理
3.1 灰狼优化算法(GWO)基础
灰狼优化算法模拟灰狼群体的狩猎行为。在灰狼群体中,存在严格的等级制度,分为 α、β、δ 和 ω 四个等级 。α 狼是领导者,负责决策;β 狼辅助 α 狼;δ 狼服从 α 和 β 狼的命令;ω 狼处于底层。在狩猎过程中,狼群通过包围、追捕和攻击猎物来获取食物。
在 GWO 算法中,猎物的位置代表最优解,狼群通过不断更新自身位置来逼近猎物。算法通过数学模型模拟狼群的包围、狩猎和攻击行为,不断迭代搜索最优解 。
3.2 多目标扩展
为了将 GWO 算法应用于多目标优化问题,引入帕累托最优理论。帕累托最优解是指在多个目标函数下,不存在其他解能在不恶化至少一个目标的情况下,使其他目标得到改善的解。MOGWO 算法通过维护一个外部档案来存储非支配解(帕累托最优解),并在迭代过程中不断更新档案,同时采用适当的策略引导狼群搜索,以获取更广泛、更均匀分布的帕累托前沿
⛳️ 运行结果
🔗 参考文献
[1] 陈柏良.差分灰狼算法在含换电站经济调度中的应用研究[D].燕山大学[2025-04-30].
[2] 程宇旭.基于改进粒子群算法的微电网能量优化调度研究及实现[D].中南大学,2014.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇