【智能优化算法】红嘴蓝喜鹊优化器RBMOmatlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在当今科技飞速发展的时代,优化算法在众多领域中发挥着举足轻重的作用。从工程设计的参数优化,到无人机路径规划以确保高效执行任务,再到各类复杂系统的性能提升,优化算法的身影无处不在。然而,传统的优化方法在面对复杂的非线性模型时,往往暴露出诸多局限性,如收敛速度缓慢,导致计算效率低下;精度欠佳,难以满足对结果准确性要求较高的场景;鲁棒性差,在面对不同初始条件或复杂多变的环境时,算法性能波动较大,无法稳定地提供可靠的解决方案。

在此背景下,群体智能算法应运而生,作为一种超启发式方法,它模拟自然界中生物群体的智能行为,为解决复杂优化问题开辟了新的途径。但现有的群体智能技术同样存在一些亟待解决的问题,限制了其在更广泛领域的应用和进一步的发展。

红嘴蓝喜鹊优化器(Red - Billed Blue Magpie Optimizer,RBMO)正是在这样的需求驱动下被提出。红嘴蓝喜鹊作为一种在自然界中展现出独特行为模式的鸟类,其合作和高效的捕食行为为算法的设计提供了丰富的灵感源泉。通过深入研究红嘴蓝喜鹊在搜寻、追逐、攻击猎物以及食物储藏等过程中的行为机制,并将其抽象转化为数学模型,RBMO 为解决复杂优化问题提供了一种全新的思路和方法。

自 RBMO 提出以来,相关研究如雨后春笋般展开。众多学者对其性能进行了多方面的评估与验证,涵盖了数值优化领域的基准测试,以及在无人机路径规划、工程设计等实际应用场景中的实践检验。在数值优化方面,利用 CEC2014 和 CEC2017 等测试套件进行实验,结果显示 RBMO 在不同维度下均展现出优异的性能,在与其他多种先进算法的对比中,常常能够脱颖而出,取得更好的弗里德曼平均等级,充分证明了其强大的数字优化能力。在无人机路径规划应用中,无论是二维还是三维场景,RBMO 都能成功搜索到更优的路径解决方案,有效提升了无人机飞行的安全性与效率,为该领域的技术发展注入了新的活力。在工程设计问题上,如压力容器设计、焊接梁设计、拉压弹簧设计、悬臂梁设计以及三杆桁架设计等,RBMO 能够准确找到使成本最小化或性能最优化的参数组合,在成本控制和质量提升方面表现出色,凸显了其在实际工程问题解决中的巨大潜力和应用价值。

二、RBMO 的生物学灵感

红嘴蓝喜鹊(Urocissa erythroryncha)隶属鸦科蓝鹊属,是一种外形引人注目的鸟类,其体长与欧亚喜鹊相近,却拥有着在鸦科鸟类中数一数二的长尾,长度可达 65 - 68 厘米,体重一般在 196 - 232 克之间。它们羽色斑斓,头部、颈部和胸部呈黑色,头顶带有细微的蓝色斑点;肩部和臀部呈现出柔和的紫蓝色;下体则为浅灰色奶油色。最为醒目的是其鲜艳的紫蓝色长尾和带有宽阔白色尖端的翅膀初级飞羽,鸟喙、腿部和脚部均为橙红色,眼睛周围环绕着一圈与之相匹配的红色(部分个体的红色偏黄)。

在自然环境中,红嘴蓝喜鹊主要栖息于常绿森林和灌木丛,多见于丘陵或山区地带,但它们也展现出了非凡的适应能力,能够在城市环境中生存繁衍,如北京和香港等地都能发现它们的踪迹。其分布范围广泛,从喜马拉雅山脉西部起,穿越缅甸、泰国、柬埔寨、老挝和越南,一直延伸至中国中部、东部以及西南满洲地区。

红嘴蓝喜鹊的觅食行为极为丰富多样。它们既会在树枝间穿梭,寻找各类无脊椎动物、小型脊椎动物、果实以及部分植物种子,也会在地面上寻觅食物,甚至会突袭其他鸟类的巢穴,取食鸟蛋和雏鸟。为了提高觅食效率,它们常常以小团体(2 - 5 只)或大群体(10 只以上)的形式活动。在清晨和傍晚时分,红嘴蓝喜鹊的活跃度达到峰值,此时它们频繁聚集,共同协作捕捉大型昆虫或小型脊椎动物。群体行动不仅有助于它们更有效地发现猎物,还能依靠群体的力量突破猎物的防御,获取食物。

在追捕猎物时,红嘴蓝喜鹊展现出了极高的狩猎技巧和协作精神。它们会根据猎物的特点和环境条件,灵活采用多种战术。例如,面对静止或移动缓慢的猎物,它们可能会采用快速啄食的方式;对于善于跳跃躲避的猎物,红嘴蓝喜鹊会以跳跃捕捉的方式应对;而当猎物在空中飞行时,它们则会施展飞行捕捉昆虫的本领。此外,红嘴蓝喜鹊还具备未雨绸缪的特性,它们会将暂时吃不完的多余食物储存在树洞或其他隐蔽之处,以备食物短缺时食用,这种食物储藏行为为它们在资源不稳定的环境中生存提供了有力保障。

三、RBMO 的数学模型构建

3.1 初始种群生成

在 RBMO 算法中,初始种群的生成是算法运行的起点。假设我们要解决的优化问题是在一个 <inline_LaTeX_Formula>D<\inline_LaTeX_Formula > 维的搜索空间中寻找最优解,种群规模设定为 < inline_LaTeX_Formula>N<\inline_LaTeX_Formula>。此时,每一个红嘴蓝喜鹊个体在搜索空间中的位置 < inline_LaTeX_Formula>X_i<\inline_LaTeX_Formula>(<inline_LaTeX_Formula>i = 1, 2, ..., N<\inline_LaTeX_Formula>)可通过以下方式随机生成:
<display_LaTeX_Formula>X_{i,j} = lb_j + rand (0, 1) \times (ub_j - lb_j)<\display_LaTeX_Formula>
其中,<inline_LaTeX_Formula>X_{i,j}<\inline_LaTeX_Formula > 代表第 < inline_LaTeX_Formula>i<\inline_LaTeX_Formula > 个红嘴蓝喜鹊个体在第 < inline_LaTeX_Formula>j<\inline_LaTeX_Formula > 维空间中的位置;<inline_LaTeX_Formula>lb_j<\inline_LaTeX_Formula > 和 < inline_LaTeX_Formula>ub_j<\inline_LaTeX_Formula > 分别表示第 < inline_LaTeX_Formula>j<\inline_LaTeX_Formula > 维搜索空间的下限和上限;<inline_LaTeX_Formula>rand (0, 1)<\inline_LaTeX_Formula > 是一个在 0 到 1 之间均匀分布的随机数。通过这种方式生成的初始种群,能够在搜索空间中较为均匀地分布,为后续的搜索过程提供多样化的起始点,有助于算法更全面地探索搜索空间,避免陷入局部最优解。

3.2 搜寻行为模拟

红嘴蓝喜鹊在搜寻猎物时,个体之间会相互协作并共享信息。在算法中,这一行为通过以下公式模拟:
<display_LaTeX_Formula>X_{i,j}^{t + 1} = X_{i,j}^t + r_1 \times (X_{best,j}^t - X_{i,j}^t) + r_2 \times (X_{r1,j}^t - X_{r2,j}^t)<\display_LaTeX_Formula>
其中,<inline_LaTeX_Formula>X_{i,j}^{t + 1}<\inline_LaTeX_Formula > 表示第 < inline_LaTeX_Formula>i<\inline_LaTeX_Formula > 个红嘴蓝喜鹊个体在第 < inline_LaTeX_Formula>t + 1<\inline_LaTeX_Formula > 次迭代时第 < inline_LaTeX_Formula>j<\inline_LaTeX_Formula > 维空间中的位置;<inline_LaTeX_Formula>X_{i,j}^t<\inline_LaTeX_Formula > 是其在第 < inline_LaTeX_Formula>t<\inline_LaTeX_Formula > 次迭代时的位置;<inline_LaTeX_Formula>X_{best,j}^t<\inline_LaTeX_Formula > 代表在第 < inline_LaTeX_Formula>t<\inline_LaTeX_Formula > 次迭代时种群中最优个体在第 < inline_LaTeX_Formula>j<\inline_LaTeX_Formula > 维的位置;<inline_LaTeX_Formula>X_{r1,j}^t<\inline_LaTeX_Formula > 和 < inline_LaTeX_Formula>X_{r2,j}^t<\inline_LaTeX_Formula > 是从种群中随机选择的两个个体在第 < inline_LaTeX_Formula>j<\inline_LaTeX_Formula > 维的位置;<inline_LaTeX_Formula>r_1<\inline_LaTeX_Formula > 和 < inline_LaTeX_Formula>r_2<\inline_LaTeX_Formula > 是两个在 0 到 1 之间均匀分布的随机数。在该公式中,<inline_LaTeX_Formula>r_1 \times (X_{best,j}^t - X_{i,j}^t)<\inline_LaTeX_Formula > 这一项促使个体向当前最优解靠近,体现了个体对全局最优信息的利用,有助于加速算法的收敛;<inline_LaTeX_Formula>r_2 \times (X_{r1,j}^t - X_{r2,j}^t)<\inline_LaTeX_Formula > 则增加了搜索的随机性,使个体能够探索到搜索空间中的不同区域,避免算法过早收敛于局部最优解,从而实现全局搜索与局部搜索的平衡。

3.3 追逐行为模拟

当发现猎物后,红嘴蓝喜鹊会迅速追逐。在算法里,追逐行为的模拟公式如下:
<display_LaTeX_Formula>X_{i,j}^{t + 1} = X_{best,j}^t + \alpha \times r_3 \times (X_{prey,j}^t - X_{i,j}^t)<\display_LaTeX_Formula>
这里,<inline_LaTeX_Formula>\alpha<\inline_LaTeX_Formula > 是一个控制追逐步长的参数,通常随着迭代次数的增加而逐渐减小,以在算法前期保持较强的探索能力,后期增强局部搜索能力;<inline_LaTeX_Formula>r_3<\inline_LaTeX_Formula > 是一个在 0 到 1 之间均匀分布的随机数;<inline_LaTeX_Formula>X_{prey,j}^t<\inline_LaTeX_Formula > 表示在第 < inline_LaTeX_Formula>t<\inline_LaTeX_Formula > 次迭代时猎物(即当前最优解的近似位置)在第 < inline_LaTeX_Formula>j<\inline_LaTeX_Formula > 维的位置。该公式表明,红嘴蓝喜鹊个体在追逐猎物时,会以当前最优解为导向,根据随机因素和步长控制参数不断调整自己的位置,逐渐逼近猎物,反映在算法中就是不断向当前找到的较优解靠近,进一步优化解的质量。

3.4 攻击行为模拟

在接近猎物后,红嘴蓝喜鹊会发起攻击。算法通过以下公式模拟攻击行为:
<display_LaTeX_Formula>X_{i,j}^{t + 1} = X_{i,j}^t + \beta \times (randn (0, 1) \times X_{best,j}^t - X_{i,j}^t)<\display_LaTeX_Formula>
其中,<inline_LaTeX_Formula>\beta<\inline_LaTeX_Formula > 是一个影响攻击强度的参数;<inline_LaTeX_Formula>randn (0, 1)<\inline_LaTeX_Formula > 是一个服从均值为 0、标准差为 1 的正态分布的随机数。在攻击行为模拟中,红嘴蓝喜鹊个体以自身当前位置为基础,结合从正态分布中生成的随机数以及当前最优解的信息来更新位置。由于正态分布的特性,随机数在 0 附近出现的概率较高,这使得个体在攻击时会在当前最优解附近进行较为精细的搜索,有更大的机会找到更优的解,体现了算法在局部搜索上的强化,有助于提高解的精度。

3.5 食物储藏行为模拟

红嘴蓝喜鹊将多余食物储藏起来的行为,在算法中有助于保存当前找到的较优解。具体通过以下方式实现:当某个个体找到一个比当前储存的最优解更优的解时,就更新储存的最优解。设当前储存的最优解为 <inline_LaTeX_Formula>X_{store}<\inline_LaTeX_Formula>,其适应度值为 < inline_LaTeX_Formula>f (X_{store})<\inline_LaTeX_Formula>,新找到的个体解为 < inline_LaTeX_Formula>X_{new}<\inline_LaTeX_Formula>,其适应度值为 < inline_LaTeX_Formula>f (X_{new})<\inline_LaTeX_Formula>,若 < inline_LaTeX_Formula>f (X_{new}) < f (X_{store})<\inline_LaTeX_Formula>(假设问题为最小化问题),则 < inline_LaTeX_Formula>X_{store} = X_{new}<\inline_LaTeX_Formula>。这种食物储藏行为的模拟确保了算法在搜索过程中不会丢失已发现的优秀解,随着迭代的进行,储存的最优解不断更新和优化,最终趋向于全局最优解,增强了算法的稳定性和可靠性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值