【电力系统潮流】牛顿-拉夫逊(NRPF)算法求潮流,包括变压器分接、Q限制和快速解耦功率流方法【IEEE14节点】附Matlab

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电力系统潮流计算是电力系统分析与运行控制中的核心问题之一,其目的是确定在给定运行条件下,电力系统中各节点电压的幅值和相角,以及各支路上的有功和无功功率潮流。准确、高效的潮流计算是进行系统规划、安全评估、稳定分析、无功优化以及故障分析等一系列高级应用的基础。本文深入探讨了解决这一非线性方程组问题的经典迭代算法——牛顿-拉夫逊(Newton-Raphson Power Flow, NRPF)算法,并在此基础上详细阐述了实际电力系统中需要考虑的两个重要约束:变压器分接头(Tap Changer)对潮流的影响以及发电机无功功率(Q)输出限制的处理方法。此外,作为一种改进的潮流计算方法,快速解耦功率流(Fast Decoupled Power Flow, FDPF)算法也将在文中进行介绍和分析,并最终以IEEE 14节点系统为例,对这些方法进行综合论述和说明。

关键词

电力系统;潮流计算;牛顿-拉夫逊算法;变压器分接头;无功功率限制;快速解耦功率流;IEEE 14节点系统

1. 引言

电力系统是一个庞大而复杂的网络,包含发电机、变压器、输电线路、负荷等多种设备。在特定的运行状态下,这些设备之间的能量流动,即功率潮流,遵循一系列物理定律和网络拓扑结构。潮流计算,作为一种基本的电力系统分析工具,旨在通过求解由基尔霍夫定律和设备运行特性所构建的非线性代数方程组,来确定系统中的电压、电流和功率分布。这一过程对于保障电力系统的安全稳定运行至关重要。

传统的潮流计算方法主要包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。高斯-赛德尔法具有收敛域宽、编程实现简单的优点,但收敛速度较慢,尤其对于大型电力系统,收敛性能不佳。相比之下,牛顿-拉夫逊算法以其快速的收敛速度和较强的收敛性,成为目前电力系统潮流计算中最常用的方法之一。然而,牛顿-拉夫逊算法需要计算和存储雅可比矩阵的逆,计算量较大,尤其在处理大规模系统时,对计算资源的需求较高。

在实际电力系统中,除了基本的潮流方程外,还需要考虑设备的一些特殊运行特性和约束条件。例如,变压器分接头的调节可以改变变比,进而影响潮流分布和节点电压;发电机通常有其无功功率输出的上下限,超出范围则无法正常运行。这些约束条件的引入使得潮流计算问题更加复杂,需要在迭代过程中进行处理。

为了提高计算效率,尤其是对于大规模系统,快速解耦功率流算法被提出。该方法通过对潮流方程和雅可比矩阵进行合理的简化和解耦,显著减少了每次迭代的计算量和存储需求,虽然牺牲了一定的收敛性能,但在许多情况下仍然能够满足计算要求。

本文旨在系统地阐述基于牛顿-拉夫逊算法的电力系统潮流计算基本原理,并着重讨论变压器分接头和发电机无功功率限制在潮流计算中的处理方法。在此基础上,介绍快速解耦功率流算法的思想及其优势。最后,将结合典型的IEEE 14节点系统,对这些方法进行综合性的分析和说明。

2. 牛顿-拉夫逊功率流算法基本原理

电力系统潮流计算的数学模型可以描述为一个大型的非线性代数方程组。

牛顿-拉夫逊算法具有二次收敛特性,即误差在每次迭代中平方减小,因此收敛速度非常快,尤其当初始点靠近解时。然而,计算和求逆雅可比矩阵是其主要的计算负担,对于大型系统需要采用稀疏矩阵技术来提高效率。

3. 变压器分接头对潮流计算的影响与处理

变压器是电力系统中重要的设备,其主要功能是改变电压等级以适应不同的输配电需求。部分变压器配备有可调分接头(Tap Changer),允许在一定范围内改变变压器的变比,从而调节下游节点的电压幅值和支路上的潮流分布。在潮流计算中,变压器分接头的存在需要体现在节点导纳矩阵中。

对于一台连接节点 ii和节点jj的变压器,其等效电路通常包含一个串联阻抗ZijZij和一个理想变压器。如果变压器的变比为t:1t:1,连接在节点ii的侧为tt侧,连接在节点jj的侧为11侧,则节点导纳矩阵中的相关元素会受到变比tt 的影响。

在潮流计算中处理变压器分接头通常有两种方式:

  • 定值分接头:

     如果变压器分接头固定在一个已知位置,那么其变比 tt 是一个常数。此时,只需根据变比修改节点导纳矩阵的相关元素即可。

  • 可调分接头:

     对于可调分接头的变压器,其变比 tt 可能在潮流计算过程中根据一定的控制策略进行调整,以满足特定的目标(如调节节点电压)。这种情况下,变比 tt 也成为待求变量的一部分,或者在每次迭代中根据控制目标进行更新。

如果变压器分接头用于调节下游节点的电压幅值,可以将需要调节的节点电压幅值作为约束条件引入潮流计算。此时,变压器所在的节点类型可能需要进行转换。

另一种常见的处理方式是将可调分接头的变压器所在的节点视为一种特殊的节点类型,或者在每次潮流迭代收敛后,检查需要调节的节点电压是否达到目标值,如果未达到,则根据预设的分接头调节策略(例如,每步调节一个档位)更新变比,然后重新进行潮流计算,直到电压满足要求或者达到分接头的调节极限。这种方法是一种外部迭代过程,在每一次潮流计算(牛顿-拉夫逊迭代)收敛后进行分接头的调整。

4. 发电机无功功率Q限制的处理

发电机作为电力系统的无功功率主要来源,其无功功率的输出能力受到发电机的视在功率限制、励磁系统能力以及稳定性要求等多种因素的制约。因此,在潮流计算中,需要考虑发电机无功功率输出的上下限:Qimin≤Qi≤QimaxQimin≤Qi≤Qimax。

在标准的牛顿-拉夫逊潮流算法中,PV节点的无功功率 QiQi 是计算的输出结果。如果在迭代过程中计算得到的 QiQi 超出了其运行范围,就需要对节点的类型进行转换并进行相应的处理。

处理发电机无功功率限制的常用方法如下:

  1. 初始判断与节点类型转换:

     在潮流计算开始时,所有发电机节点都被视为PV节点。在每次迭代收敛后,或者在迭代过程中,检查每个PV节点的无功功率输出 QicalcQicalc。

  2. 处理超出上限的情况:

     如果 Qicalc>QimaxQicalc>Qimax,说明该发电机无法提供所需的无功功率。此时,该节点应转换为PQ节点,其无功注入功率设为上限值 Qispec=QimaxQispec=Qimax。由于该节点现在是PQ节点,其电压幅值 ∣Vi∣∣Vi∣ 将不再是已知量,而成为待求变量。

  3. 处理超出下限的情况:

     如果 Qicalc<QiminQicalc<Qimin,说明该发电机提供的无功功率过低。此时,该节点也应转换为PQ节点,其无功注入功率设为下限值 Qispec=QiminQispec=Qimin。同样,其电压幅值 ∣Vi∣∣Vi∣ 成为待求变量。

  4. 处理从PQ节点恢复为PV节点的情况:

     在节点类型转换后,可能会出现转换后的PQ节点的电压幅值在后续迭代中恢复到其原始PV节点设定的电压幅值附近,或者其所需无功功率重新回到运行范围内的情形。此时,可以考虑将该节点重新转换为PV节点,并恢复其电压幅值已知、无功功率待求的状态。这种恢复过程通常需要额外的判断逻辑,以避免在PV和PQ节点类型之间来回振荡。一种常见的恢复策略是,当转换后的PQ节点的电压幅值 ∣Vi∣∣Vi∣ 超过其原始设定的电压幅值 ∣Vi∣spec∣Vi∣spec 加上一个小的裕度时,将其转换回PV节点。

  5. 迭代计算:

     在进行节点类型转换后,需要重新构建雅可比矩阵并进行下一轮的牛顿-拉夫逊迭代,直到所有节点的不平衡功率都收敛且所有PV节点的无功功率都在允许范围内。

这种节点类型转换的处理方法增加了潮流计算的复杂性,因为它可能导致迭代过程中的节点类型变化,每次变化都需要修改方程组和雅可比矩阵的结构。然而,它是确保计算结果符合发电机运行约束的必要步骤。

5. 快速解耦功率流(FDPF)方法

牛顿-拉夫逊算法虽然收敛速度快,但每次迭代都需要计算和求逆完整的雅可比矩阵,计算量较大。快速解耦功率流算法是一种基于对潮流方程进行简化和解耦的改进方法,旨在提高计算效率。

其中,B′B′ 和 B′′B′′ 是基于节点电纳矩阵的简化矩阵。B′B′ 通常只包含输电线路和不带变比的变压器的电纳,忽略支路电阻和变压器励磁导纳。B′′B′′ 通常只包含线路和变压器的电纳,同样忽略支路电阻和变压器励磁导纳,有时还会忽略并联电纳。更精确的FDPF版本会对 B′B′ 和 B′′B′′ 的构建进行细微调整。

快速解耦功率流算法的优点在于,矩阵 B′B′ 和 B′′B′′ 是常数矩阵(不随迭代变化,除非进行节点类型转换),只需要在计算开始时构建一次,且通常比完整的雅可比矩阵稀疏,求解线性方程组的计算量显著减小。这使得FDPF算法在计算速度上远快于牛顿-拉夫逊算法,特别适用于大规模电力系统和在线应用。然而,FDPF算法是基于近似的,收敛速度通常是线性收敛,收敛性能可能不如牛顿-拉夫逊算法稳定,在某些病态系统或离工作点较远的情况下可能不收敛或收敛缓慢。

6. IEEE 14节点系统分析

IEEE 14节点系统是电力系统分析中一个经典的测试系统,具有适度的规模和典型的设备配置,常用于验证潮流计算算法的正确性和性能。该系统包含:

  • 5个发电机节点 (PV节点,其中一个作为平衡节点)

  • 9个负荷节点 (PQ节点)

  • 11条输电线路

  • 3台变压器

该系统中的变压器通常包含可调分接头,发电机也存在无功功率输出限制,因此非常适合用来测试和展示上述牛顿-拉夫逊算法、变压器分接头处理和Q限制处理方法。

在IEEE 14节点系统上实现牛顿-拉夫逊算法求潮流,需要首先构建系统的节点导纳矩阵。然后根据节点类型设置初始电压和待求变量。迭代过程中,根据当前电压计算不平衡功率,构建并求解雅可比矩阵,更新电压。

考虑变压器分接头的处理,以IEEE 14节点系统为例,通常节点4-7、4-9和5-6之间存在变压器。假设节点4-7的变压器分接头在节点4侧,用于调节节点7的电压幅值。在潮流计算中,可以采用外部迭代的方式。先进行常规潮流计算,检查节点7的电压是否达到目标值。如果未达到,根据电压偏差调整变压器变比,更新节点导纳矩阵,然后重新计算潮流。

考虑Q限制的处理,IEEE 14节点系统中的发电机节点(通常是节点1、2、3、6、8)都有无功功率输出的上下限。由于该系统规模适中,FDPF算法的优势可能不如在大型系统上显著,但仍然可以观察到其计算速度相对于完整的牛顿-拉夫逊算法有所提升,尤其在迭代次数较多或收敛速度要求较高的情况下。

通过在IEEE 14节点系统上进行仿真计算,可以直观地比较不同算法的收敛性能、计算时间和对变压器分接头和Q限制的处理效果。例如,可以对比不同初始条件下牛顿-拉夫逊算法和快速解耦功率流算法的收敛速度和迭代次数;可以演示变压器分接头调节如何影响下游节点电压;可以观察发电机Q限制如何导致节点类型转换以及对系统电压和功率分布的影响。

7. 结论

电力系统潮流计算是电力系统分析与运行的基础,而牛顿-拉夫逊算法以其快速的收敛性成为主流方法。然而,实际系统中存在的变压器分接头和发电机无功功率限制等约束,使得潮流计算问题更加复杂,需要在算法中进行相应的处理。处理变压器分接头可以通过修改节点导纳矩阵或者将其作为待求变量,而处理Q限制则通常采用节点类型转换的方法。

快速解耦功率流算法作为一种高效的潮流计算方法,通过对潮流方程和雅可比矩阵进行简化和解耦,显著提高了计算速度,适用于大规模系统的快速计算和在线应用,但其收敛性能在某些情况下可能不如牛顿-拉夫逊算法稳定。

IEEE 14节点系统作为一个经典的测试系统,为研究和验证潮流计算算法提供了便利。在该系统上应用牛顿-拉夫逊算法,并结合变压器分接头和Q限制的处理方法,可以有效地求解系统的潮流分布。同时,应用快速解耦功率流算法也可以观察到其计算效率的提升。

⛳️ 运行结果

🔗 参考文献

[1] 李雪.考虑负荷和风电随机变化的电力系统概率最优潮流问题研究[D].上海大学,2009.

[2] 赖永生,刘明波.电力系统动态无功优化问题的快速解耦算法[J].中国电机工程学报, 2008, 28(7):8.DOI:10.3321/j.issn:0258-8013.2008.07.006.

[3] 沈茂亚,丁晓群,王仲达,等.电力系统时变无功优化算法[J].电力系统及其自动化学报, 2007, 19(4):5.DOI:10.3969/j.issn.1003-8930.2007.04.018.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值