聚划算!Transformer-BiLSTM、Transformer、BiLSTM三模型多变量回归预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

聚划算!Transformer-BiLSTM、Transformer、BiLSTM 三模型多变量回归预测

在数据驱动的时代,多变量回归预测广泛应用于经济分析、交通流量预测、能源消耗预估等众多领域。不同的机器学习模型在处理多变量回归任务时,展现出各异的性能。今天,我们就来聚焦 Transformer-BiLSTM、Transformer、BiLSTM 这三个模型,看看它们在多变量回归预测中会碰撞出怎样的火花,究竟谁更 “聚划算”!

一、多变量回归预测:重要性与挑战

多变量回归预测旨在通过分析多个自变量与因变量之间的关系,对未来的因变量值进行预测。以城市交通流量预测为例,交通流量不仅受时间、天气等因素影响,还与节假日、大型活动举办等因素密切相关,这些多元影响因素构成了多变量回归预测的研究对象。准确的多变量回归预测能够帮助企业优化资源配置、辅助政府制定科学决策,然而,变量间复杂的相互关系、数据的高维性和非线性等问题,也给预测任务带来了巨大挑战。这使得探索更有效的预测模型成为学术界和工业界共同关注的焦点。

二、模型架构与原理详解

2.1 BiLSTM:双向捕捉序列信息

BiLSTM(双向长短期记忆网络)是 LSTM(长短期记忆网络)的改进版本。LSTM 通过引入细胞状态和门控机制,能够有效解决循环神经网络(RNN)中的梯度消失和梯度爆炸问题,擅长处理长序列数据中的时间依赖关系 。而 BiLSTM 在此基础上,由一个正向 LSTM 和一个反向 LSTM 组成,输入序列同时在两个方向上进行处理。正向 LSTM 从序列的起始端向末端传递信息,反向 LSTM 则从末端向起始端传递信息,最终将两个方向的输出进行合并。这样一来,BiLSTM 能够同时利用过去和未来的信息,更全面地捕捉序列的上下文特征。在多变量回归预测中,对于具有时间顺序的变量数据,BiLSTM 可以更好地挖掘变量间的时间关联。

2.2 Transformer:自注意力机制的革新

Transformer 模型摒弃了传统的循环结构,完全基于自注意力机制(Self-Attention)构建。自注意力机制能够让模型在处理序列数据时,计算每个位置与其他所有位置之间的关联程度,从而动态地分配注意力权重,聚焦于对当前预测任务更重要的信息。在 Transformer 中,输入序列首先通过嵌入层转换为向量表示,然后经过多头注意力机制(Multi-Head Attention),多个不同的注意力头从不同角度捕捉序列特征,之后再经过前馈神经网络进行进一步处理。Transformer 的优势在于能够并行计算,大大提高了训练效率,并且可以有效处理长距离依赖关系,在自然语言处理、时间序列分析等领域都取得了优异的成绩。

2.3 Transformer-BiLSTM:强强联合

Transformer-BiLSTM 模型将 Transformer 和 BiLSTM 的优势进行融合。首先,利用 BiLSTM 对多变量序列数据进行初步的特征提取,捕捉数据中的时间依赖关系;然后,将 BiLSTM 的输出作为 Transformer 的输入,通过 Transformer 的自注意力机制进一步挖掘特征之间的复杂关联,尤其是那些跨越较长时间间隔或变量维度的关系。这种组合方式既能发挥 BiLSTM 对序列数据的处理能力,又能借助 Transformer 强大的特征交互捕捉能力,有望在多变量回归预测中实现更精准的结果。

三、实验设置与数据处理

3.1 实验数据集

为了全面评估三个模型的性能,我们选取了多个具有代表性的多变量数据集。例如,在电力负荷预测场景中,选取包含历史电力负荷、温度、湿度、风速等变量的数据集;在金融市场预测中,使用包含股票价格、交易量、宏观经济指标等变量的数据集。这些数据集涵盖了不同领域的多变量数据特点,能够充分检验模型在实际应用中的表现。

3.2 数据预处理

拿到原始数据集后,首先进行数据清洗,处理缺失值和异常值,确保数据的完整性和准确性。对于缺失值,采用均值填充、插值法等方法进行填补;对于异常值,通过统计分析和可视化手段进行识别,并根据实际情况进行修正或删除。接着,对数据进行归一化处理,将不同变量的数据映射到相同的数值区间,如 [0, 1] 或 [-1, 1],以消除变量间量纲差异对模型训练的影响。最后,按照一定比例(如 7:1:2)将数据划分为训练集、验证集和测试集,训练集用于模型参数学习,验证集用于调整超参数,测试集用于评估模型的泛化能力。

3.3 模型训练与超参数调整

在模型训练过程中,我们使用均方误差(MSE)作为损失函数,以衡量预测值与真实值之间的差异,并采用 Adam、SGD 等优化器对模型参数进行更新。针对每个模型,通过网格搜索、随机搜索等方法对超参数进行调整。比如,对于 BiLSTM,调整隐藏层单元数量、层数;对于 Transformer,调整注意力头数量、嵌入维度;对于 Transformer-BiLSTM,则需要综合调整两个部分的超参数,以找到最优的模型配置。

四、实验结果与性能对比

4.1 评估指标

为了客观评价三个模型的性能,我们采用以下评估指标:

  • 均方误差(MSE)

    :计算预测值与真实值之差的平方的平均值,MSE 值越小,说明预测结果越接近真实值。

  • 平均绝对误差(MAE)

    :计算预测值与真实值之差的绝对值的平均值,MAE 直观地反映了预测误差的平均大小。

  • 决定系数(

    \(R^2\):用于衡量模型对数据的拟合优度,取值范围在 0 到 1 之间,\(R^2\)越接近 1,表明模型的拟合效果越好。

五、总结与展望

通过对 Transformer-BiLSTM、Transformer、BiLSTM 三个模型在多变量回归预测中的对比研究,我们发现 Transformer-BiLSTM 模型通过融合两种模型的优势,在预测准确性上表现突出,堪称这场 “比拼” 中的 “聚划算” 之选。然而,模型的优化和改进永无止境。未来,可以进一步探索如何优化 Transformer-BiLSTM 模型的结构,提高模型的训练效率;尝试将更多先进的技术,如强化学习、迁移学习等融入模型,以适应更复杂多变的多变量回归预测场景。同时,随着数据规模和多样性的不断增加,如何更好地利用海量数据训练模型,也是值得深入研究的方向。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值