✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究针对电力系统中梯级水电和火电机组联合调度问题,引入 NSGA-Ⅲ 优化算法,构建以发电成本最小化、水电弃水量最小化、碳排放最小化为目标的联合多目标调度模型。详细分析梯级水电和火电机组运行特性及约束条件,对 NSGA-Ⅲ 算法进行适应性改进以求解模型。通过仿真实验对比不同算法,验证改进 NSGA-Ⅲ 算法在联合调度中的有效性与优越性,为电力系统优化调度提供理论与技术支持,助力实现经济、环保、高效的电力生产。
关键词
NSGA-Ⅲ 优化算法;梯级水电;火电机组;联合多目标调度;电力系统
一、引言
1.1 研究背景与意义
在全球能源结构转型与可持续发展的大背景下,电力系统作为能源供应的核心环节,其优化调度至关重要。梯级水电具有清洁、可再生的优势,但受来水不确定性影响大;火电机组虽灵活性较高,却面临高能耗、高污染问题 。将梯级水电和火电机组进行联合调度,可充分发挥两者互补优势,提高能源利用效率,降低发电成本与环境污染 。然而,联合调度涉及多目标、多约束的复杂优化问题,传统调度方法难以实现多目标的有效平衡。NSGA-Ⅲ 优化算法作为一种高效的多目标进化算法,在处理复杂优化问题上具有独特优势,将其应用于梯级水电和火电机组联合调度,对提升电力系统运行的经济性、环保性和可靠性具有重要现实意义。
1.2 国内外研究现状
国外对水电与火电联合调度的研究起步较早,早期多采用动态规划、线性规划等传统优化方法 。随着智能算法的发展,遗传算法、粒子群算法等被广泛应用于电力系统调度优化 。在多目标优化方面,NSGA 系列算法、Pareto 蚁群算法等逐渐成为研究热点 。国内学者在借鉴国外研究的基础上,结合我国电力系统特点,开展了大量研究 。部分研究通过改进传统算法提高调度优化效果;部分研究引入智能算法解决复杂调度问题 。但目前针对梯级水电和火电机组联合多目标调度的研究,在算法优化性能、多目标协同程度以及对实际复杂工况的适应性等方面仍有提升空间。
1.3 研究内容与方法
本研究主要内容包括:分析梯级水电和火电机组的运行特性及约束条件;构建基于 NSGA-Ⅲ 优化算法的联合多目标调度模型;对 NSGA-Ⅲ 算法进行改进以适应联合调度问题;通过仿真实验验证模型和算法的有效性 。研究方法上,采用理论分析与仿真实验相结合,运用数学建模方法构建调度模型,利用编程工具实现算法并进行仿真分析 。
二、梯级水电和火电机组运行特性及约束条件分析
2.1 梯级水电运行特性
2.1.1 水力联系紧密
梯级水电站沿河流呈阶梯状分布,上一级电站的下泄流量直接影响下一级电站的入库流量 。这种水力联系使得梯级水电的发电过程相互关联、相互制约,在调度时需综合考虑各电站间的水量传递与能量转换关系 。
2.1.2 来水不确定性
水电发电量高度依赖天然来水情况,而降雨、径流等水文因素具有随机性和季节性变化特点 。来水的不确定性导致梯级水电出力波动较大,增加了调度的难度与复杂性 。
2.1.3 库容调节能力差异
不同梯级水电站的库容大小和调节性能各不相同,有的电站具备多年调节能力,可对长期来水进行调节;有的仅为日调节或径流式电站 。这种库容调节能力的差异,使得在调度时需合理安排各电站的发电计划,充分发挥其调节优势 。
2.2 火电机组运行特性
2.2.1 发电灵活性有限
火电机组从启动到达到额定出力需要一定时间,且存在最小技术出力限制 。在负荷变化较快时,火电机组难以快速响应,调整发电功率的灵活性相对较差 。
2.2.2 能耗与污染特性
火电机组发电过程中需要消耗大量化石燃料,产生二氧化碳、二氧化硫等污染物 。发电成本与燃料价格紧密相关,同时其污染物排放对环境造成较大压力,在调度中需考虑环保约束 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇