✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
在现代电力系统向着智能化、复杂化发展的进程中,准确掌握系统的实时运行状态是确保电网安全、稳定、高效运行的关键。动态状态估计作为获取电力系统运行状态的核心技术,能够基于量测数据实时估计系统的电压幅值、相位等状态变量。扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)凭借在处理非线性系统方面的优势,成为电力系统动态状态估计的重要方法。本文将深入探讨这两种滤波算法在电力系统动态状态估计中的原理、应用及性能对比。
一、电力系统动态状态估计概述
(一)状态估计的意义与目标
电力系统包含众多节点、线路及设备,其运行状态复杂多变。状态估计通过对各类量测数据(如节点注入功率、支路功率、节点电压等)的处理,计算出系统中各节点电压幅值和相位等状态变量,为电力系统的潮流计算、故障诊断、优化调度等提供准确的基础数据,从而保障电网的安全稳定运行和经济高效调度。
(二)动态状态估计的特点
与静态状态估计不同,动态状态估计考虑了电力系统的动态变化过程,能够跟踪系统状态随时间的演变。在电力系统中,发电机的动态响应、负荷的随机波动等因素都会导致系统状态的动态变化,因此动态状态估计需要采用更适合处理时变系统的算法,以实现对系统状态的实时、准确估计。
二、扩展卡尔曼滤波(EKF)在电力系统动态状态估计中的应用
(一)EKF 原理基础
卡尔曼滤波(KF)是一种用于线性系统的最优状态估计方法,通过状态预测和更新两个步骤,实现对系统状态的递推估计。然而,电力系统本质上是非线性系统,扩展卡尔曼滤波(EKF)应运而生。EKF 的核心思想是利用泰勒级数展开,将非线性系统在当前估计状态点进行线性化近似,从而将非线性系统的状态估计问题转化为近似的线性系统问题,进而应用卡尔曼滤波算法进行求解 。
(二)EKF 在电力系统中的建模与实现
- 系统建模:建立电力系统的非线性状态空间模型,描述系统状态变量(如节点电压幅值和相位)与量测变量(如功率量测)之间的关系。例如,基于电力系统的潮流方程构建系统模型,该模型包含了节点电压、电流、功率等变量之间的非线性关系。
- 线性化处理:在每次迭代过程中,根据当前的状态估计值,对非线性系统模型进行泰勒级数一阶展开,得到线性化的状态转移方程和量测方程。
- 滤波过程:按照卡尔曼滤波的预测和更新步骤,利用线性化后的方程计算状态预测值、预测协方差,再根据量测数据对预测值进行更新,得到新的状态估计值和估计协方差,实现对电力系统状态的动态估计。
(三)EKF 的优缺点
EKF 的优点在于能够将成熟的卡尔曼滤波理论应用于非线性系统,在一定程度上解决了非线性系统的状态估计问题,且计算过程相对清晰、易于实现。但其缺点也较为明显,由于采用了线性化近似,当系统非线性程度较高时,线性化误差较大,可能导致滤波发散,估计精度下降,甚至无法收敛到真实状态。
三、无迹卡尔曼滤波(UKF)在电力系统动态状态估计中的应用
(一)UKF 原理基础
无迹卡尔曼滤波(UKF)摒弃了 EKF 对非线性函数进行线性化的做法,采用无迹变换(UT)来近似非线性函数的概率分布。其基本思想是通过选取一组 Sigma 点,这些点能够准确地捕获随机变量的均值和协方差,将这些点通过非线性函数进行传递,再根据传递后的点计算输出随机变量的均值和协方差,从而实现对非线性系统状态的估计 。
(二)UKF 在电力系统中的建模与实现
- Sigma 点选取:根据系统状态变量的均值和协方差,选取合适的 Sigma 点集,确保这些点能够较好地描述状态变量的概率分布特性。
- 状态预测与更新:将 Sigma 点通过系统的非线性状态转移方程进行传递,计算状态预测值和预测协方差;再将传递后的 Sigma 点通过量测方程,结合实际量测数据,对状态预测值进行更新,得到新的状态估计值和估计协方差。
- 迭代估计:重复上述过程,随着新的量测数据不断输入,实现对电力系统状态的动态跟踪估计。
(三)UKF 的优缺点
UKF 的优势在于无需对非线性系统进行线性化近似,能够更准确地处理非线性问题,在非线性程度较高的系统中,相比 EKF 具有更高的估计精度和更好的稳定性,不易出现滤波发散的情况。但 UKF 的计算复杂度相对较高,尤其是在处理高维系统时,Sigma 点的计算和协方差矩阵的更新会带来较大的计算量。
四、EKF 与 UKF 在电力系统动态状态估计中的性能对比
通过在不同的电力系统场景下进行仿真实验,对 EKF 和 UKF 的性能进行对比分析。从估计精度来看,在系统非线性程度较低时,EKF 和 UKF 都能取得较好的估计效果,但随着非线性程度的增加,UKF 的估计精度明显优于 EKF;在收敛速度方面,UKF 通常能够更快地收敛到真实状态;而在计算复杂度上,EKF 相对较低,UKF 由于涉及较多的 Sigma 点计算,计算耗时较长 。
在实际应用中,若电力系统的非线性程度不高,且对计算资源有限制时,EKF 是一种较为合适的选择;而当系统非线性较强,对估计精度要求较高,且计算资源允许的情况下,UKF 则能发挥更好的性能,为电力系统的运行控制提供更可靠的状态估计结果。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
本主页CSDN博客涵盖以下领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类