基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计附Matlab代码

✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

在现代电力系统向着智能化、复杂化发展的进程中,准确掌握系统的实时运行状态是确保电网安全、稳定、高效运行的关键。动态状态估计作为获取电力系统运行状态的核心技术,能够基于量测数据实时估计系统的电压幅值、相位等状态变量。扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)凭借在处理非线性系统方面的优势,成为电力系统动态状态估计的重要方法。本文将深入探讨这两种滤波算法在电力系统动态状态估计中的原理、应用及性能对比。

一、电力系统动态状态估计概述

(一)状态估计的意义与目标

电力系统包含众多节点、线路及设备,其运行状态复杂多变。状态估计通过对各类量测数据(如节点注入功率、支路功率、节点电压等)的处理,计算出系统中各节点电压幅值和相位等状态变量,为电力系统的潮流计算、故障诊断、优化调度等提供准确的基础数据,从而保障电网的安全稳定运行和经济高效调度。

(二)动态状态估计的特点

与静态状态估计不同,动态状态估计考虑了电力系统的动态变化过程,能够跟踪系统状态随时间的演变。在电力系统中,发电机的动态响应、负荷的随机波动等因素都会导致系统状态的动态变化,因此动态状态估计需要采用更适合处理时变系统的算法,以实现对系统状态的实时、准确估计。

二、扩展卡尔曼滤波(EKF)在电力系统动态状态估计中的应用

(一)EKF 原理基础

卡尔曼滤波(KF)是一种用于线性系统的最优状态估计方法,通过状态预测和更新两个步骤,实现对系统状态的递推估计。然而,电力系统本质上是非线性系统,扩展卡尔曼滤波(EKF)应运而生。EKF 的核心思想是利用泰勒级数展开,将非线性系统在当前估计状态点进行线性化近似,从而将非线性系统的状态估计问题转化为近似的线性系统问题,进而应用卡尔曼滤波算法进行求解 。

(二)EKF 在电力系统中的建模与实现

  1. 系统建模:建立电力系统的非线性状态空间模型,描述系统状态变量(如节点电压幅值和相位)与量测变量(如功率量测)之间的关系。例如,基于电力系统的潮流方程构建系统模型,该模型包含了节点电压、电流、功率等变量之间的非线性关系。
  1. 线性化处理:在每次迭代过程中,根据当前的状态估计值,对非线性系统模型进行泰勒级数一阶展开,得到线性化的状态转移方程和量测方程。
  1. 滤波过程:按照卡尔曼滤波的预测和更新步骤,利用线性化后的方程计算状态预测值、预测协方差,再根据量测数据对预测值进行更新,得到新的状态估计值和估计协方差,实现对电力系统状态的动态估计。

(三)EKF 的优缺点

EKF 的优点在于能够将成熟的卡尔曼滤波理论应用于非线性系统,在一定程度上解决了非线性系统的状态估计问题,且计算过程相对清晰、易于实现。但其缺点也较为明显,由于采用了线性化近似,当系统非线性程度较高时,线性化误差较大,可能导致滤波发散,估计精度下降,甚至无法收敛到真实状态。

三、无迹卡尔曼滤波(UKF)在电力系统动态状态估计中的应用

(一)UKF 原理基础

无迹卡尔曼滤波(UKF)摒弃了 EKF 对非线性函数进行线性化的做法,采用无迹变换(UT)来近似非线性函数的概率分布。其基本思想是通过选取一组 Sigma 点,这些点能够准确地捕获随机变量的均值和协方差,将这些点通过非线性函数进行传递,再根据传递后的点计算输出随机变量的均值和协方差,从而实现对非线性系统状态的估计 。

(二)UKF 在电力系统中的建模与实现

  1. Sigma 点选取:根据系统状态变量的均值和协方差,选取合适的 Sigma 点集,确保这些点能够较好地描述状态变量的概率分布特性。
  1. 状态预测与更新:将 Sigma 点通过系统的非线性状态转移方程进行传递,计算状态预测值和预测协方差;再将传递后的 Sigma 点通过量测方程,结合实际量测数据,对状态预测值进行更新,得到新的状态估计值和估计协方差。
  1. 迭代估计:重复上述过程,随着新的量测数据不断输入,实现对电力系统状态的动态跟踪估计。

(三)UKF 的优缺点

UKF 的优势在于无需对非线性系统进行线性化近似,能够更准确地处理非线性问题,在非线性程度较高的系统中,相比 EKF 具有更高的估计精度和更好的稳定性,不易出现滤波发散的情况。但 UKF 的计算复杂度相对较高,尤其是在处理高维系统时,Sigma 点的计算和协方差矩阵的更新会带来较大的计算量。

四、EKF 与 UKF 在电力系统动态状态估计中的性能对比

通过在不同的电力系统场景下进行仿真实验,对 EKF 和 UKF 的性能进行对比分析。从估计精度来看,在系统非线性程度较低时,EKF 和 UKF 都能取得较好的估计效果,但随着非线性程度的增加,UKF 的估计精度明显优于 EKF;在收敛速度方面,UKF 通常能够更快地收敛到真实状态;而在计算复杂度上,EKF 相对较低,UKF 由于涉及较多的 Sigma 点计算,计算耗时较长 。

在实际应用中,若电力系统的非线性程度不高,且对计算资源有限制时,EKF 是一种较为合适的选择;而当系统非线性较强,对估计精度要求较高,且计算资源允许的情况下,UKF 则能发挥更好的性能,为电力系统的运行控制提供更可靠的状态估计结果。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

本主页CSDN博客涵盖以下领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值