【无人机】通过中心辐射的无人机包裹递送K-means 和遗传算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着电商行业的蓬勃发展,传统物流配送方式面临效率与成本的双重挑战,无人机包裹递送成为极具潜力的解决方案。本文基于中心辐射模式,提出一种融合 K-means 算法与遗传算法的无人机包裹递送优化策略。首先利用 K-means 算法对配送区域进行聚类划分,确定子区域及配送中心,再通过遗传算法优化各子区域内无人机的配送路径以及子区域与中心之间的运输安排。通过仿真实验,对比传统配送策略,验证该方法在提高配送效率、降低运营成本方面的有效性,为无人机物流配送的实际应用提供理论与技术支持。

关键词

无人机包裹递送;中心辐射模式;K-means 算法;遗传算法;路径优化

一、引言

1.1 研究背景

近年来,全球电商市场规模持续扩大,包裹递送需求呈爆发式增长 。传统的地面物流配送受交通拥堵、配送范围限制等因素影响,难以满足日益增长的时效性要求,且运营成本居高不下 。无人机凭借其灵活机动、不受地面交通制约的特点,为包裹递送提供了新的解决方案,能够有效缩短配送时间、降低人力和运输成本 。中心辐射模式在物流领域已被广泛应用,通过设立中心枢纽,整合分散的运输资源,可显著提高运输效率。将中心辐射模式引入无人机包裹递送,结合合适的优化算法,有望进一步提升无人机物流配送的整体性能。

1.2 研究现状

目前,无人机路径优化问题已成为研究热点,众多算法被应用于该领域 。在聚类算法方面,K-means 算法因其简单高效,常被用于对配送点进行区域划分,以减少路径规划的复杂度 。在路径优化算法中,遗传算法以其强大的全局搜索能力,能够在复杂的解空间中寻找较优的配送路径 。然而,现有研究多将两种算法独立应用,缺乏将 K-means 算法与遗传算法有效结合,并基于中心辐射模式进行无人机包裹递送优化的深入研究 。如何利用 K-means 算法合理划分配送区域,再借助遗传算法优化中心与子区域、子区域内的无人机配送路径,成为亟待解决的问题。

1.3 研究目的与意义

本研究旨在提出一种基于中心辐射模式,融合 K-means 算法与遗传算法的无人机包裹递送优化策略,实现配送区域的科学划分与配送路径的高效优化 。研究成果将有助于提高无人机包裹递送的效率和准确性,降低物流运营成本,推动无人机物流配送行业的发展,同时为解决 “最后一公里” 配送难题提供新的思路和方法 。

二、中心辐射模式与相关算法原理

2.1 中心辐射模式

中心辐射模式是一种以中心枢纽为核心的物流运输模式 。在无人机包裹递送中,设立一个或多个配送中心作为辐射中心,周边配送点按照一定规则划分成不同子区域 。无人机从配送中心出发,完成子区域内的包裹递送任务后返回中心,或在不同子区域间进行运输 。该模式通过集中处理和分发包裹,减少了无人机的空载飞行距离,提高了资源利用率 。

2.2 K-means 算法原理

K-means 算法是一种基于距离的聚类算法,其目标是将数据对象划分为 K 个聚类,使同一聚类内的数据对象相似度较高,不同聚类间的数据对象相似度较低 。算法的基本步骤如下:

  1. 随机选择 K 个初始聚类中心;
  1. 计算每个数据对象到各个聚类中心的距离,将数据对象分配到距离最近的聚类中心所属的聚类;
  1. 根据分配结果,重新计算每个聚类的中心位置;
  1. 重复步骤 2 和 3,直到聚类中心不再发生变化或达到预设的迭代次数 。

在无人机包裹递送中,可将配送点作为数据对象,利用 K-means 算法对配送点进行聚类,从而确定子区域和配送中心的位置 。

2.3 遗传算法原理

遗传算法是一种模拟生物进化过程的随机搜索算法,通过选择、交叉和变异等操作,在解空间中搜索最优解 。其基本流程如下:

  1. 初始化种群:随机生成一定数量的个体,每个个体代表一个无人机配送路径方案 。
  1. 适应度计算:根据目标函数计算每个个体的适应度值,适应度值越高表示该方案越优 。
  1. 选择操作:基于适应度值,采用轮盘赌选择、锦标赛选择等方法,从种群中选择个体进入下一代 。
  1. 交叉操作:对选中的个体进行交叉操作,模拟生物进化中的基因重组,生成新的个体 。
  1. 变异操作:对部分个体进行变异操作,引入新的基因,增加种群的多样性 。
  1. 判断终止条件:若达到最大迭代次数或满足收敛条件,则算法结束,输出最优解;否则返回步骤 2 继续迭代 。

在无人机包裹递送路径优化中,遗传算法可用于优化无人机在子区域内的配送路径,以及子区域与配送中心之间的运输安排 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值