作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着分布式电源(DG)在配电网中的大规模接入,有源配电网的运行特性变得更加复杂,传统配电网的控制手段已难以满足其安全、经济、高效运行的需求。智能软开关(SOP)作为一种新型电力电子设备,能够实现配电网潮流的灵活控制、改善电压分布、提高供电可靠性。然而,现有的 SOP 规划方法往往未充分考虑分布式电源的运行特性,导致规划方案难以适应有源配电网的实际运行情况。因此,研究考虑分布式电源运行特性的有源配电网智能软开关 SOP 规划方法,对于提升有源配电网的运行性能和资源优化配置能力具有重要意义。以 IEEE33 节点系统作为研究对象,能够为该规划方法提供标准化的测试平台,便于验证和对比分析。
二、分布式电源运行特性与 SOP 功能分析
(一)分布式电源运行特性
- 间歇性与波动性:光伏、风电等分布式电源受光照强度、风速等自然条件影响,其出力具有明显的间歇性和波动性,导致配电网潮流和电压的不稳定。例如,光伏发电在白天光照充足时出力较大,夜间则停止发电;风力发电随风速变化而波动。
- 可调度性差异:不同类型的分布式电源可调度性不同。储能系统可根据电网需求灵活充放电,具有较强的可调度性;而部分小型分布式电源(如户用光伏)调度难度较大。
- 接入位置与容量影响:分布式电源的接入位置和容量直接影响配电网的潮流分布和电压质量。不合理的接入可能导致局部节点电压越限、线路过载等问题。
(二)智能软开关 SOP 功能
- 潮流控制:SOP 能够快速、灵活地调节线路潮流,实现功率的合理分配,避免线路过载,降低网损。
- 电压调节:通过控制 SOP 两端的电压幅值和相位,改善配电网的电压分布,解决电压越限问题。
- 供电可靠性提升:在故障情况下,SOP 可迅速切换运行模式,实现非故障区域的不间断供电,提高配电网的供电可靠性。
三、基于 IEEE33 节点的有源配电网 SOP 规划模型构建
(一)目标函数
- 经济性目标:以 SOP 投资成本、运行维护成本以及配电网网损成本之和最小为目标。投资成本包括 SOP 设备的购置、安装费用;运行维护成本涵盖设备检修、更换零部件等费用;网损成本根据配电网各线路的功率损耗计算。
- 可靠性目标:引入系统平均停电时间(SAIFI)、系统平均停电频率(SAIDI)等可靠性指标,以降低停电时间和次数,提高供电可靠性为目标。
- 电压质量目标:以配电网各节点电压偏移量最小为目标,确保节点电压在允许范围内,提升电压质量。
(二)约束条件
- 功率平衡约束:IEEE33 节点系统中各节点的有功功率和无功功率在任意时刻都应保持平衡,即电源发出的功率等于负荷消耗的功率与网络损耗之和。
- 电压约束:各节点电压需满足国家标准规定的允许范围,防止电压过高或过低对用电设备造成损害。
- SOP 容量约束:SOP 的有功和无功功率调节范围不能超过其额定容量。
- 线路容量约束:配电网中各条线路的传输功率不能超过其额定容量,避免线路过载引发安全事故。
- 分布式电源出力约束:考虑分布式电源的运行特性,其出力需满足自身的技术限制和调度要求。
四、规划模型求解算法
(一)算法选择
采用混合智能优化算法,将粒子群优化算法(PSO)与遗传算法(GA)相结合。粒子群优化算法具有收敛速度快的优点,遗传算法具有较强的全局搜索能力,两者结合能够克服单一算法的缺陷,提高算法的求解效率和精度。
(二)算法改进与应用
针对有源配电网 SOP 规划问题的特点,对混合算法进行改进。例如,在算法中引入动态惯性权重和交叉变异概率,以适应问题的复杂性;结合 IEEE33 节点系统的拓扑结构和参数,设置合理的算法初始参数,确保算法能够快速收敛到最优解或近似最优解。
五、基于 IEEE33 节点的案例分析
(一)案例系统参数设置
以 IEEE33 节点系统为基础,在系统中接入不同类型和容量的分布式电源(如光伏、风电、储能),设定各节点的负荷数据、线路参数以及 SOP 的候选安装位置和参数。
(二)仿真结果分析
- 规划方案对比:分别采用传统未考虑分布式电源运行特性的 SOP 规划方法和本文提出的规划方法,计算得出不同的 SOP 规划方案,对比分析两种方案在经济性、可靠性和电压质量方面的差异。
- 关键参数影响分析:分析分布式电源接入容量、SOP 额定容量等关键参数对规划结果的影响,明确各参数的敏感程度,为实际规划提供参考。
- 规划方案验证:将规划方案应用于 IEEE33 节点系统进行仿真运行,验证规划方案在不同工况下(如分布式电源出力波动、负荷变化)的有效性和适应性。
六、结论与展望
(一)研究结论
本文提出的考虑分布式电源运行特性的有源配电网智能软开关 SOP 规划方法,通过构建合理的规划模型和采用有效的混合优化算法求解,能够在 IEEE33 节点系统中实现 SOP 的优化规划,提高有源配电网的运行性能和经济效益。案例分析表明,该方法相较于传统方法具有明显优势。
(二)研究展望
未来可进一步考虑更多不确定性因素(如分布式电源出力预测误差、负荷不确定性)对 SOP 规划的影响,完善规划模型;探索 SOP 与其他新型设备(如柔性交流输电装置)协同规划的方法,提升有源配电网的综合调控能力。
⛳️ 运行结果
🔗 参考文献
[1] 王成山,宋关羽,李鹏,等.考虑分布式电源运行特性的有源配电网智能软开关SOP规划方法[J].中国电机工程学报, 2017, 37(7):8.DOI:10.13334/j.0258-8013.pcsee.152649.
[2] 马丽,薛飞,石季英,等.有源配电网分布式电源与智能软开关三层协调规划模型[J].电力系统自动化, 2018, 42(11):8.DOI:10.7500/AEPS20171118002.
[3] 陈鑫瑞,蒙昌州,潘邦勇.计及需求响应的有源配电网储能优化调度[J].Modeling and Simulation, 2024, 13.DOI:10.12677/mos.2024.134449.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇