从训练时间、预测精度、Loss变

本文通过手写二维卷积实现与PyTorch内置模块对比,探讨了卷积层、超参数及AlexNet模型在训练时间、预测精度、Loss变化上的影响。实验中,作者分析了不同卷积核大小、batchsize和学习率等因素,并用AlexNet在数据集上进行了训练和验证。

手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果

1.2 torch.nn实现二维卷积实验

使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、 预测精度、Loss变化等角度分析

1.3 超参数对比分析

手写二维卷积实现需要掌握以下几个步骤:1. 定义卷积核(filter)的大小和数量;2. 对输入图像进行填充;3. 根据步长和输入大小计算输出大小;4. 对输入图像进行卷积计算;5. 应用激活函数;6. 返回输出。 首先,我们需要导入数据集进行预处理。以MNIST手写数字识别数据集为例,我们可以将图片像素的灰度值归一化到0到1之间。此外,我们还需要将标签进行独热编码。 定义卷积核的大小和数量:我们可以定义多个卷积核,每个卷积核都是一个小矩阵,通过在输入图像上滑动进行卷积运算。对于卷积核的大小,可以根据实际需求选择。一般情况下,卷积核的大小为3x3或5x5。 对输入图像进行填充:填充可以保持输入图像的大小不,常见的填充方式有“valid”和“same”。对于“valid”填充方式,不进行填充;而对于“same”填充方式,可以根据卷积核的大小自动计算填充大小,使得卷积后输出图像的尺寸与输入图像的尺寸相同。 根据步长和输入大小计算输出大小:步长决定了卷积核在输入图像上滑动的距离。通过步长的调节,我们可以控制输出图像的大小。对于输入图像的大小为n x n,卷积核的大小为f x f,填充大小为p,步长为s时,输出图像的尺寸可以通过下面的公式计算得到:(n+2p-f)/s+1。 对输入图像进行卷积计算:将卷积核与输入图像进行点乘操作,将结果相加,可以得到卷积后的输出。 应用激活函数:卷积计算后的输出需要通过激活函数进行非线性映射。常见的激活函数有ReLU、Sigmoid和Tanh等。 训练时间预测精度loss化可以通过反向传播算法进行优化。我们可以定义损失函数,如交叉熵损失函数,使用梯度下降算法来更新卷积核的权重参数。通过不断迭代训练集,我们可以减小损失函数的值,提高预测精度。 在实验中,我们可以使用卷积神经网络(CNN)对MNIST数据集进行训练和测试。通过调整网络参数和超参数,我们可以观察到训练时间预测精度loss化情况。在训练过程中,我们可以使用交叉验证的方式来评估模型的性能。 总结起来,手写二维卷积实现包括定义卷积核、填充方式、步长、卷积计算、激活函数以及损失函数等步骤。在至少一个数据集上进行实验,我们可以观察到训练时间化、预测精度的提高以及loss的减小。这些实验结果可以帮助我们优化卷积神经网络的结构和参数设置。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

交通上的硅基思维

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值