pytorch实现卷积神经网络实验

本文详细介绍了如何在PyTorch中手写二维卷积并进行实验,使用车辆分类数据集进行训练和测试。实验包括自定义单通道和多通道卷积、自定义卷积层的构建,以及在模型中应用这些自定义组件。同时,对比了使用torch.nn模块定义的卷积模型,讨论了两者在速度和效果上的差异。文章提供了完整的代码和数据集链接供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:手写二维卷积的实现
要求:
手写二维卷积的实现,并从至少一个数据集上进行实验,这里我选取了车辆分类数据集(后面的实验都是用的车辆分类数据集),主要根据数据集的大小,手动定义二维卷积操作,如:自定义单通道卷积、自定义多通道卷积、自定义卷积层等。
实验过程:
1.1相关包的导入

1.	import torch  
2.	import numpy as np  
3.	import random  
4.	from IPython import display  
评论 72
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Studying_swz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值