一:手写二维卷积的实现
要求:
手写二维卷积的实现,并从至少一个数据集上进行实验,这里我选取了车辆分类数据集(后面的实验都是用的车辆分类数据集),主要根据数据集的大小,手动定义二维卷积操作,如:自定义单通道卷积、自定义多通道卷积、自定义卷积层等。
实验过程:
1.1相关包的导入
1. import torch
2. import numpy as np
3. import random
4. from IPython import display
5. from matplotlib
本文详细介绍了如何在PyTorch中手写二维卷积并进行实验,使用车辆分类数据集进行训练和测试。实验包括自定义单通道和多通道卷积、自定义卷积层的构建,以及在模型中应用这些自定义组件。同时,对比了使用torch.nn模块定义的卷积模型,讨论了两者在速度和效果上的差异。文章提供了完整的代码和数据集链接供读者参考。
订阅专栏 解锁全文
422

被折叠的 条评论
为什么被折叠?



