网友来信:关于几何级数的图形证明

    某日夜里我突发奇想,想到用分形图形来表示各种几何级数,于是写下了上一篇日志。日志发出后我收到了相当多的回复,很多网友告诉我说,这篇日志还留下了很多空白,大有扩展的潜力和推广的空间,非常具有启发性。网友morrowind在原日志第29楼评论说,大图形里面放置若干个相似的小图形时,并不一定要对应边与对应边相拼。考虑一个边长分别为1和根号5的矩形,它能够轻易地分成五个相同的小矩形,并且每一个都和原来的相似。这样的话,我们便又能递归地表示(1/5)^n了。只要能够递归地表示出(1/5)^n,从图形上我们总可以得出Σ(1/5)^n=1/4的结论,因为在每一个尺度下总有四个未被继续分割的区域,其中染色的区域始终占据了1/4。
    12楼的est用一个极其简单的式子给出了Σ(1/5)^n=1/4的证明:在五进制中,0.1 + 0.01 + 0.001 + 0.0001 + ... = 0.11111...,这恰好就说明了1/5 + 1/25 + 1/125 + .. = 1/4。上述两套证明方案对所有大于2的正整数n都成立,并且仔细思考你会看出它们的本质是相同的:0.11111...就是0.44444...的1/4,因为在每一个小数位上前者都是后者的1/4。


 
   

    网友陈熙发来邮件说,我们不见得非要把原图形分割为n个互相全等的小区域,只要它们面积相等就可以了。为了用图形说明1/5 + 1/25 + 1/125 + .. = 1/4,只需要在大正方形正中间画一个边长为1/sqrt(5)的小正方形即可,然后将“外框”的其中1/4染色,并递归地处理小正方形。这样,我们就非常直观地得到了想要的结论。这个方法同样对所有大于2的正整数n都成立——把正方形改成正n-1边形即可。或者更简单地,我们可以直接用圆来代替正多边形。

 
   

    一位好朋友告诉我说,前几天matrix介绍过一个图形证明,它可以处理所有的情况——不仅仅是底数为正整数的倒数的情况。这种方法能够一举解决底数为一切(0,1)内的实数的情况。原理很简单,利用一连串相似图形得到x^n,再用相似三角形的对应边之比得到Σx^n的公式。群众的智慧是强大的,期待大家还能找出更新、更牛的做法来。

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值