趣题:完全图K_n最少可以拆成多少个完全二分图?

   

    一个完全图K_n是指一个有n个顶点的图,其中每两个点之间都有一条边相连。一个完全二分图是指这样一种图,图中的顶点分为两个点集L和R,L里的每个顶点都和R里的所有点相连。上图显示了一种把K_5划分为四个完全二分图的方法(分别用红蓝绿灰四种颜色来表示这四个子图)。你觉得,最少可以把完全图K_n划分成多少个完全二分图?给出一种划分方案,并证明这个数目已经不能再少了。


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    和你想象的一样,这个答案就是n-1。一个完全图K_n永远不可能被拆分为n-2个或更少的完全二分图。拆成n-1个是很好办的:从K_n中随便取出一个点作为L集,其余n-1个点作为R集,把这n-1条边从图中取出来形成一个完全二分图,然后继续递归地处理K_(n-1);当规模降到K_2时,我们已经得到了n-2个二分图,并且图中就只剩下一条边了,合起来正好是n-1个完全二分图。现在的关键是,如何证明n-1个已经是最少的了?
    这个证明牛B就牛B在,它根本就不是用组合数学的方法证明的。它居然是用线性代数来证明的!这可以说是我见过的最诡异的证明了。假设我们把K_n划分为了m个完全二分图,第i个二分图的左右两个点集分别记作L_i和R_i。给图中的每个顶点设置一个变量,第i个顶点上的数就记作x_i。于是呢,有

    现在,让我们假设m<n-1。考虑下面这个线性方程组:

    这个线性方程组的式子个数比未知量少,因此它一定有一组非零解c_1, c_2, ..., c_n。既然每个L_i里面的变量和都为0了,根据前面的那个恒等式,我们得知

    考虑所有c_i的和的平方,展开后有

    但是,一方面,由线性方程组的第一个方程知c_i的总和为0,其平方当然也等于0;另一方面,c_i是非零解,它的平方和是大于0的。矛盾产生。

    题目来源:Proofs from THE BOOK, Chapter 9

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值