为什么平分圆面积的所有曲线中以直径最短?

本文探讨了平分圆面积的曲线中以直径为最短路径的问题,并通过构造辅助线段的方法给出了直观的证明过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    很多时候,我们往往不知道如何证明一些最简单、最基本的命题,即使证明本身也并不复杂。上个星期我去《数学思维方法与创新》这门通选课时,丘维声教授就提到了这个问题;在随堂统计中,知道三角函数和角公式证明方法的人出乎意料的少,而事实上高中的数学教材上印有这个公式的完整证明。
    试着证明这个定理:给定一个圆,则端点在圆周上的平分圆面积的曲线以圆的直径最短。


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 
    证明:随意作一条平分圆面积的曲线(图中的红色曲线),它的两个端点分别为A、B。作出平行于AB的直径CD,作出过A点的直径AB'。注意到B和B'关于CD对称。红色曲线不可能全部在CD的一侧(否则它围住的面积小于一个半圆,无法平分圆面积),因此它与直径CD必然有交点。找出一个交点E,则曲线长度大于AE+EB,它等于AE+EB',而AE+EB'的长度大于直径AB'。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值