目录
题目
描述
给定一个整数数组 cost \cost ,其中 cost[i]\cost[i] 是从楼梯第i \i 个台阶向上爬需要支付的费用,下标从0开始。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
数据范围:数组长度满足 1 \le n \le 10^5 \1≤n≤105 ,数组中的值满足 1 \le cost_i \le 10^4 \1≤costi≤104
示例1
输入:
[2,5,20]复制返回值:
5复制说明:
你将从下标为1的台阶开始,支付5 ,向上爬两个台阶,到达楼梯顶部。总花费为5示例2
输入:
[1,100,1,1,1,90,1,1,80,1]复制返回值:
6复制说明:
你将从下标为 0 的台阶开始。 1.支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。 2.支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。 3.支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。 4.支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。 5.支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。 6.支付 1 ,向上爬一个台阶,到达楼梯顶部。 总花费为 6 。
思路
源码
#
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
# @param cost int整型一维数组
# @return int整型
#
class Solution:
__slots__=()
def minCostClimbingStairs(self , cost: List[int]) -> int:
# write code here
#动态规划:
cost.append(0)
dp=[0 for i in range(len(cost))]
dp[0]=cost[0]
dp[1]=cost[1]
for i in range(2,len(cost)):
dp[i]=min(dp[i-1],dp[i-2])+cost[i]
return dp[-1]
通过截图
同步更新于个人博客系统:最小花费爬楼梯