第二章 算法
算法的特性
算法有五个基本特性:输入、输出、有穷性、确定性和可行性
输入输出:有零个或多个输入,至少有一个或多个输出
有穷性:指算法在执行有限的步骤之后,自动结束而不会出现无限循环,并且每一个步骤在可接受的时间内完成
确定性:算法的每一个步骤都具有确定的含义,不会出现二义性
可行性:算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限的次数完成
算法设计的要求
正确性:指算法至少应该具有输入、输出和加工处理无歧义性、能正确反映问题的需求、能够得到问题的正确答案。
可读性:算法设计的另一目的是为了便于阅读、理解和交流
健壮性:当输入数据不合法是,算法也能做出相关处理,而不是产生异常或莫名奇妙的结果
时间效率高和存储量低:效率就是执行时间的问题,存储量指运行过程中需要的最大存储空间
算法效率的度量方法
事后统计方法:
通过设计好的测试程序和数据,利用计算机计时器计算出来运行所需要的时间。
缺点:
- 必须根据算法编号程序。
- 时间还受硬件、CPU使用率和内存占用情况影响。
- 运行时间还和测试数据的规模有关
事前分析估算方法:
在计算机程序编制前,依据统计方法对算法进行估算,最有效的方法是估计步骤的数量。
时间复杂度
概念
函数的渐近增长
步骤计算中,常数对数值的影响<乘积对数值的影响<最高次项指数的影响,而且最高次项的常数不重要。所以,判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而更应该关注最高阶项的阶数。
时间复杂度定义:
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度,其中f(n)是问题规模n的某个函数。
其中,O[1]叫常数阶,O[n]叫线性阶,O[ n 2 n^2 n2]叫平方阶。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数
- 在修改后的运行次数函数中,只保留最高阶项
- 如果最高阶项存在且不是1,则去除与这个项相乘的常数项
多种阶
1. 常数阶:
所有的常数都表示为O[1], 不存在O[2], O[3],下面的例子f(n)=3,根据上面的方法1,改为1,得O[1]
int sum = 0, n = 100; // 1次
sum = (1 + n) * n / 2; // 1次
printf("%d", sum); // 1次
注意,对于分支结构,无论真假,执行次数都是恒定的,除了循环结构,时间复杂度都是O[1]
2. 线性阶:
分析算法的复杂度,关键就是要分析循环结构的运行情况,下面这个例子复杂度为O[n],因为循环体中的代码要执行n次
int i;
for (i = 0; i < n; i++)
{
... // 这里是时间复杂度为O[1]的语句
}
是否可以看成这里是 1 * n,而不是1+1+1…,也可以认为是,重复执行的才用乘法?
3. 对数阶:
先看代码:
int count = 1;
while (count