非参数贝叶斯模型、Dirichlet Process,Stick-Breaking

非参数贝叶斯模型

资料:
非参数贝叶斯模型概述
如何简单易懂地理解贝叶斯非参数模型?

为了讲清楚什么是非参数贝叶斯模型,先看看下面几个概念:

参数模型

参数模型就是知道总体(随机变量)的分布,但是不知道这个分布的参数,比如知道x服从参数为p的二项分布,因此我们得到x的样本后,要反推回p到底是什么。求解参数模型的常用方法比如最大似然估计(MLE),最大后验估计(MAP)。在参数模型中,常用的已知分布有:二项式分布、多项式分布、高斯分布。

非参数模型

非参数模型对于总体的分布不做任何假设,只是知道总体是一个随机变量,其分布是存在的(分布中也可能存在参数),但是无法知道其分布的形式,更不知道分布的相关参数,只有在给定一些样本的条件下,能够依据非参数统计的方法进行推断。
从上述的区别中可以看出,问题中有没有参数,并不是参数模型和非参数模型的区别。其区别主要在于总体的分布形式是否已知。而为何强调“参数”与“非参数”,主要原因在于参数模型的分布可以有参数直接确定。

非参数贝叶斯模型

在这里插入图片描述

Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)

Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
如何理解狄利克雷过程(Dirichlet Process)

Stick-Breaking

如何理解狄利克雷过程(Dirichlet Process)
从折棍子(Stick Breaking)模型到狄利克雷过程(DP)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值