非参数贝叶斯模型
资料:
非参数贝叶斯模型概述
如何简单易懂地理解贝叶斯非参数模型?
为了讲清楚什么是非参数贝叶斯模型,先看看下面几个概念:
参数模型
参数模型就是知道总体(随机变量)的分布,但是不知道这个分布的参数,比如知道x服从参数为p的二项分布,因此我们得到x的样本后,要反推回p到底是什么。求解参数模型的常用方法比如最大似然估计(MLE),最大后验估计(MAP)。在参数模型中,常用的已知分布有:二项式分布、多项式分布、高斯分布。
非参数模型
非参数模型对于总体的分布不做任何假设,只是知道总体是一个随机变量,其分布是存在的(分布中也可能存在参数),但是无法知道其分布的形式,更不知道分布的相关参数,只有在给定一些样本的条件下,能够依据非参数统计的方法进行推断。
从上述的区别中可以看出,问题中有没有参数,并不是参数模型和非参数模型的区别。其区别主要在于总体的分布形式是否已知。而为何强调“参数”与“非参数”,主要原因在于参数模型的分布可以有参数直接确定。
非参数贝叶斯模型
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
如何理解狄利克雷过程(Dirichlet Process)
Stick-Breaking
如何理解狄利克雷过程(Dirichlet Process)
从折棍子(Stick Breaking)模型到狄利克雷过程(DP)