pytorch训练过程中出现nan的排查思路

本文提供了一套系统的方法来诊断和解决深度学习模型训练过程中出现的NaN值问题,包括检查模型前向传播、梯度裁剪及调整学习率等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 最常见的就是出现了除0或者log0这种,看看代码中在这种操作的时候有没有加一个很小的数,但是这个数数量级要和运算的数的数量级要差很多。一般是1e-8。
  2. 在optim.step()之前裁剪梯度。
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_norm(model.parameters, max_norm, norm_type=2)
optim.step()
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值