Wishart 分布
Wishart 分布是用来描述多元正态分布样本的协方差矩阵的。Wishart 分布的随机变量是一个随机矩阵。
定义
假设
X
X
X是一个
n
∗
p
n*p
n∗p的矩阵,其中,每一行
X
i
X_{i}
Xi服从多元正态分布:
X
i
∽
N
p
(
0
,
Σ
)
X_{i} \backsim N_{p}(0,\Sigma)
Xi∽Np(0,Σ)
也就是每一个样本
X
i
X_{i}
Xi服从
p
p
p维的正太分布。
令
A
=
∑
i
X
i
T
X
i
A = \sum_{i}X_{i}^TX_{i}
A=i∑XiTXi
则随机矩阵
A
A
A(
p
∗
p
维
p*p维
p∗p维)就是wishart分布的随机变量。
A
A
A也常被称作是散度矩阵:
A
∽
W
p
(
n
,
Σ
)
A \backsim W_{p}(n, \Sigma)
A∽Wp(n,Σ)
n
n
n是自由度。
逆Wishart分布
如果一个正定矩阵 B B B的逆矩阵 B − 1 ∽ W p ( n , Σ ) B^{-1} \backsim W_{p}(n, \Sigma) B−1∽Wp(n,Σ),那么称 B ∽ W p − 1 ( n , Σ ) B \backsim W_{p}^{-1}(n, \Sigma) B∽Wp−1(n,Σ)
Inverse-Wishart分布常作为Bayes中多元正态分布的协方差阵的共轭先验分布
假设
X
∈
R
n
∗
p
,
X
i
∽
N
p
(
0
,
Σ
)
,
Σ
∽
W
p
−
1
(
m
,
Ω
)
X \in R^{n*p}, X_{i} \backsim N_{p}(0, \Sigma), \Sigma \backsim W_{p}^{-1}(m, \Omega)
X∈Rn∗p,Xi∽Np(0,Σ),Σ∽Wp−1(m,Ω)
那么
Σ
\Sigma
Σ后验分布:
Σ
∣
d
a
t
a
∽
W
p
−
1
(
m
+
n
,
A
+
Ω
)
,
A
=
∑
i
X
i
T
X
i
=
n
S
\Sigma|data \backsim W_{p}^{-1}(m+n, A+\Omega),A = \sum_{i}X_{i}^{T}X_{i}=nS
Σ∣data∽Wp−1(m+n,A+Ω),A=i∑XiTXi=nS