正态逆威沙特分布NIW

在研究变点模型时,假设每个区组内的队列观测都独立同分布于该区组的正态分布(每个区组内的正态参数可能不同,用omega存储所有区组的正态参数)。

如:共有10个队列,分为3个区组,变点位置Q1=3,Q2=8,则队列1,2属于区组1,队列3-7属于区组2,队列8-10属于区组3——x1,x2 iid服从于N(mu1,var1),x3-x7 iid服从于N(mu2,var2), x8-x10 iid服从于N(mu3,var3)。

使用贝叶斯框架来分析:
omega的先验分布:(mu_j,var_j) iid~NIW(mu0,lambda0,a,b)
由于(mu_j,var_j)是一元正态参数,NIW分布退化为正态-逆伽马分布。不过这里先不论,用NIW也没错。
则:p(omega)=p(mu1,var1,mu2,var2,mu3,var3)=p(mu1,var1)*p(mu2,var2)*p(mu3,var3)=NIW(mu1,var1|mu0,lambda0,a,b)NIW(mu2,var2|mu0,lambda0,a,b)NIW(mu3,var3|mu0,lambda0,a,b)
注:这里的NIW(mu1,var1|mu0,lambda0,a,b)指的是以mu0,lambda0,a,b为参数的NIW分布在mu1,var上的概率密度,R代码为:

library(LaplacesDemon)
dnorminvwishart(mu, mu0, lambda0, var, b, a, log=FALSE) 

下面是对正态逆威沙特分布的介绍:
对于多元正态分布N(mu,Sigma),正态逆威沙特分布是其共轭先验:
mu为3维参数向量
Sigma为协方差阵
Sigma~InvWishart(nu,S)
mu|Sigma~N(mu0,Sigma/lambda0)
则:
p(mu,Sigma)=p(mu|Sigma)p(Sigma)=dnorm(mu0,Sigma/lambda0)*diwish(nu,S)
(mu,Sigma)~NIW(mu0,lambda0,nu,S)
记观测数据为x=(x1,x2,…,xn),xi为第3维观测数据,则:
(mu,Sigma|x)~NIW(mu’,lambda’,nu’,S’)
(下图中mu_n=mu’
lambda_n=lambda’
nu_n=nu’
Phi_n=S’)
在这里插入图片描述

参考:https://en.wikipedia.org/wiki/Normal-inverse-Wishart_distribution#Posterior_distribution_of_the_parameters

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值