MCP:让AI真正“懂你”的下一代协议,2025年最值得关注的十大服务

一、MCP是什么?

重新定义AI与世界的连接方式 MCP(Model Context Protocol,模型上下文协议)是由人工智能公司Anthropic于2024年推出的开放协议,旨在解决大语言模型(LLM)的“信息孤岛”问题。通过标准化接口,MCP让AI模型(如Claude)能够安全、高效地连接外部数据源和工具,例如本地文件、数据库、API服务甚至其他AI模型,从而突破传统对话式AI的局限

核心功能:

 • 实时数据获取:例如查询股票价格、天气预报或企业私有数据库。

 • 专属知识调用:直接读取用户笔记、代码库或云盘文件,提供个性化回答。

 • 工具执行能力:执行订餐、发邮件、提交代码等具体操作,而不仅仅是生成文本。

 • 多模型协作:通过MCP桥接不同AI模型,实现复杂任务的分工处理  

工作原理: 1. 用户指令 → 2. MCP客户端(如Cursor编辑器)→ MCP服务器(本地或云端)→ 4. 工具调用 → 5. 结果返回AI并生成最终答案 

二、2025年最值得关注的Cursor可调用MCP服务

MCP服务的核心价值在于将AI能力与真实世界的工具、数据无缝连接。在Cursor中,开发者可以通过配置多种MCP服务器,实现代码生成+外部工具调用+数据交互的一体化开发体验。以下是当前最值得关注的MCP服务及其官方资源:

1. 文件系统操作:FileSystem MCP Server
  • 功能:
  • 允许Cursor直接读写本地或远程文件,支持代码库分析、文档生成、日志查询等场景。例如:通过自然语言指令“分析当前项目的代码结构并生成API文档”,Cursor可自动调用该服务完成任务。
  • 配置地址: 

https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem

  • 典型场景:
    • 自动生成项目README文档

    • 批量重命名代码文件

    • 实时读取日志文件定位Bug

2. 网页内容抓取:Fetch MCP Server
  • 功能:专为LLM优化的网页内容获取工具,可将网页内容转化为Markdown格式,支持动态渲染页面抓取。
  • 配置地址: 

https://github.com/modelcontextprotocol/servers/tree/main/src/fetch 

  • 典型场景:
    • 自动抓取API文档辅助代码生成

    • 竞品分析时提取网页关键数据

    • 实时获取Stack Overflow解答并嵌入代码注释

3. GitHub集成服务
  • 功能:通过MCP实现与GitHub仓库的深度交互,包括代码提交、分支管理、PR审核等。
  • 配置地址: 

https://github.com/modelcontextprotocol/servers/tree/main/src/gith

  • 典型场景:
    • 指令“基于最新commit创建新分支”自动执行

    • 分析仓库贡献者活跃度生成报告

    • 自动修复代码冲突并提交PR

4. 数据库直连服务
  • 功能:支持MySQL、PostgreSQL等数据库的查询与操作,Cursor可直接生成SQL语句并返回结果。
  • 配置示例: 开发者可基于开源模板(如Node.js或Python实现)快速构建私有数据库MCP服务器,参考: 

https://github.com/modelcontextprotocol/servers/tree/main/src/database 

  • 典型场景:
    • 生成用户行为分析报告

    • 自动修复数据库字段异常

    • 联调时模拟测试数据插入

5. AI绘图与模型调用:Replicate AI Gateway
  • 功能:通过MCP桥接Stable Diffusion、DALL·E等图像生成模型,实现“文字描述→生成图片→嵌入项目”的自动化流程。
  • 服务地址: 

https://replicate.com(需配置API Key) 

  • 典型场景:
    • 生成项目UI设计稿

    • 自动创建技术文档配图

    • 批量生成A/B测试用素材

6. 私有化知识库服务
  • 功能:连接Notion、Confluence等工具,让Cursor直接调用团队知识库内容辅助开发。
  • 配置模板: Notion官方提供MCP服务器示例: 

https://github.com/modelcontextprotocol/servers/tree/main/src/notio

  • 典型场景:
    • 根据产品需求文档自动生成代码框架

    • 检索技术方案历史版本对比差异

    • 嵌入团队编码规范检查代码合规性

7. 本地开发工具链:UVX工具集
  • 功能:通过uvx命令管理Python编写的MCP服务,例如代码质量检查、依赖包更新等。
  • 安装地址: 

https://astral.sh/uv(跨平台安装指南) 

  • 典型场景:
    • 自动修复PEP8格式错误

    • 扫描依赖漏洞并推荐升级版本

    • 联调时一键启动多服务测试环境

如何获取更多MCP服务?

  1. 官方生态库:访问Model Context Protocol官网的“Servers”板块: 

https://modelcontextprotocol.io/servers 

  1. 社区精选:Cursor用户共享的MCP服务器列表: 

https://cursor.directory/mcp 

  1. 开源平台:GitHub搜索标签

#modelcontextprotocol,筛选高星项目。

配置建议

  • 优先选择Stdio传输:本地运行的服务器(如FileSystem)响应更快且更安全 
  • 权限控制:为敏感服务(如数据库)设置IP白名单或API密钥 
  • 组合调用:例如用Fetch抓取API文档 + GitHub服务提交代码,构建自动化流水线 

通过灵活配置MCP服务,Cursor可从一个代码编辑器进化为全栈开发中枢。立即尝试上述服务,体验AI与工具链深度融合的高效开发模式! 🚀

### Spring AI MCP Java SDK 概述 Spring AI MCP 是一种基于 Model Context Protocol (MCP) 的 Java 实现,旨在简化模型上下文协议的应用开发过程。通过该 SDK,开发者可以轻松构建支持 MCP 协议服务端和客户端应用程序[^1]。 #### 核心功能 - **多传输选项**:支持多种通信方式,便于灵活集成到不同的技术栈中。 - **三层架构设计**: - **MCP 客户端**:负责向服务端发送请求并处理响应。 - **MCP 服务器**:提供 API 接口供客户端调用,并管理模型的上下文数据。 - **工具回调接口(ToolCallbackProvider)**:允许扩展自定义行为以适应特定需求[^2]。 --- ### 使用方法 以下是关于如何使用 Spring AI MCP Java SDK 构建服务端和客户端的具体指导: #### 1. 引入 Maven 依赖 在项目的 `pom.xml` 文件中添加以下依赖项来引入 Spring AI MCP SDK: ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-mcp</artifactId> <version>1.0.0-M6</version> </dependency> ``` #### 2. 配置 YML 文件 创建或修改项目中的 `application.yml` 或 `application.properties` 文件,设置必要的参数。例如: ```yaml spring: ai: mcp: server-url: http://localhost:8080/mcp-server client-id: my-client-id secret-key: my-secret-key ``` #### 3. 编写服务端代码 服务端需要实现 ToolCallbackProvider 并将其注册到容器中。示例代码如下: ```java import org.springframework.ai.mcp.ToolCallbackProvider; import org.springframework.stereotype.Component; @Component public class MyToolCallbackProvider implements ToolCallbackProvider { @Override public String handleRequest(String requestPayload) { // 自定义逻辑处理接收到的数据 return "Response from tool callback provider"; } } ``` 同时,在控制器类中暴露 RESTful API 来接收来自客户端的请求: ```java import org.springframework.web.bind.annotation.*; @RestController @RequestMapping("/mcp-server") public class McpServerController { private final ToolCallbackProvider toolCallbackProvider; public McpServerController(ToolCallbackProvider toolCallbackProvider) { this.toolCallbackProvider = toolCallbackProvider; } @PostMapping("/process") public String process(@RequestBody String payload) { return toolCallbackProvider.handleRequest(payload); } } ``` #### 4. 编写客户端代码 客户端可以通过简单的 HTTP 请求与服务端交互。下面展示了一个基本的 Controller 示例: ```java import org.springframework.beans.factory.annotation.Value; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.*; import org.springframework.web.client.RestTemplate; @RestController @RequestMapping("/mcp-client") public class McpClientController { private final RestTemplate restTemplate; @Value("${spring.ai.mcp.server-url}") private String serverUrl; public McpClientController(RestTemplate restTemplate) { this.restTemplate = restTemplate; } @GetMapping("/send-request") public ResponseEntity<String> sendRequest() { String url = serverUrl + "/process"; String requestBody = "{\"key\":\"value\"}"; return restTemplate.postForEntity(url, requestBody, String.class); } } ``` --- ### 总结 Spring AI MCP 提供了一套完整的解决方案,帮助开发者快速搭建基于 MCP 协议的应用程序。无论是作为服务提供商还是消费者角色,都可以借助其强大的功能模块完成复杂的业务场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mcusun2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值