一、MCP是什么?
重新定义AI与世界的连接方式 MCP(Model Context Protocol,模型上下文协议)是由人工智能公司Anthropic于2024年推出的开放协议,旨在解决大语言模型(LLM)的“信息孤岛”问题。通过标准化接口,MCP让AI模型(如Claude)能够安全、高效地连接外部数据源和工具,例如本地文件、数据库、API服务甚至其他AI模型,从而突破传统对话式AI的局限
核心功能:
• 实时数据获取:例如查询股票价格、天气预报或企业私有数据库。
• 专属知识调用:直接读取用户笔记、代码库或云盘文件,提供个性化回答。
• 工具执行能力:执行订餐、发邮件、提交代码等具体操作,而不仅仅是生成文本。
• 多模型协作:通过MCP桥接不同AI模型,实现复杂任务的分工处理
工作原理: 1. 用户指令 → 2. MCP客户端(如Cursor编辑器)→ MCP服务器(本地或云端)→ 4. 工具调用 → 5. 结果返回AI并生成最终答案
二、2025年最值得关注的Cursor可调用MCP服务
MCP服务的核心价值在于将AI能力与真实世界的工具、数据无缝连接。在Cursor中,开发者可以通过配置多种MCP服务器,实现代码生成+外部工具调用+数据交互的一体化开发体验。以下是当前最值得关注的MCP服务及其官方资源:
1. 文件系统操作:FileSystem MCP Server
- 功能:
- 允许Cursor直接读写本地或远程文件,支持代码库分析、文档生成、日志查询等场景。例如:通过自然语言指令“分析当前项目的代码结构并生成API文档”,Cursor可自动调用该服务完成任务。
- 配置地址:
https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem
- 典型场景:
-
自动生成项目README文档
-
批量重命名代码文件
-
实时读取日志文件定位Bug
-
2. 网页内容抓取:Fetch MCP Server
- 功能:专为LLM优化的网页内容获取工具,可将网页内容转化为Markdown格式,支持动态渲染页面抓取。
- 配置地址:
https://github.com/modelcontextprotocol/servers/tree/main/src/fetch
- 典型场景:
-
自动抓取API文档辅助代码生成
-
竞品分析时提取网页关键数据
-
实时获取Stack Overflow解答并嵌入代码注释
-
3. GitHub集成服务
- 功能:通过MCP实现与GitHub仓库的深度交互,包括代码提交、分支管理、PR审核等。
- 配置地址:
https://github.com/modelcontextprotocol/servers/tree/main/src/gith
- 典型场景:
-
指令“基于最新commit创建新分支”自动执行
-
分析仓库贡献者活跃度生成报告
-
自动修复代码冲突并提交PR
-
4. 数据库直连服务
- 功能:支持MySQL、PostgreSQL等数据库的查询与操作,Cursor可直接生成SQL语句并返回结果。
- 配置示例: 开发者可基于开源模板(如Node.js或Python实现)快速构建私有数据库MCP服务器,参考:
https://github.com/modelcontextprotocol/servers/tree/main/src/database
- 典型场景:
-
生成用户行为分析报告
-
自动修复数据库字段异常
-
联调时模拟测试数据插入
-
5. AI绘图与模型调用:Replicate AI Gateway
- 功能:通过MCP桥接Stable Diffusion、DALL·E等图像生成模型,实现“文字描述→生成图片→嵌入项目”的自动化流程。
- 服务地址:
https://replicate.com
(需配置API Key)
- 典型场景:
-
生成项目UI设计稿
-
自动创建技术文档配图
-
批量生成A/B测试用素材
-
6. 私有化知识库服务
- 功能:连接Notion、Confluence等工具,让Cursor直接调用团队知识库内容辅助开发。
- 配置模板: Notion官方提供MCP服务器示例:
https://github.com/modelcontextprotocol/servers/tree/main/src/notio
- 典型场景:
-
根据产品需求文档自动生成代码框架
-
检索技术方案历史版本对比差异
-
嵌入团队编码规范检查代码合规性
-
7. 本地开发工具链:UVX工具集
- 功能:通过uvx命令管理Python编写的MCP服务,例如代码质量检查、依赖包更新等。
- 安装地址:
https://astral.sh/uv
(跨平台安装指南)
- 典型场景:
-
自动修复PEP8格式错误
-
扫描依赖漏洞并推荐升级版本
-
联调时一键启动多服务测试环境
-
如何获取更多MCP服务?
- 官方生态库:访问Model Context Protocol官网的“Servers”板块:
https://modelcontextprotocol.io/servers
- 社区精选:Cursor用户共享的MCP服务器列表:
https://cursor.directory/mcp
- 开源平台:GitHub搜索标签
#modelcontextprotocol
,筛选高星项目。
配置建议
- 优先选择Stdio传输:本地运行的服务器(如FileSystem)响应更快且更安全
- 权限控制:为敏感服务(如数据库)设置IP白名单或API密钥
- 组合调用:例如用Fetch抓取API文档 + GitHub服务提交代码,构建自动化流水线
通过灵活配置MCP服务,Cursor可从一个代码编辑器进化为全栈开发中枢。立即尝试上述服务,体验AI与工具链深度融合的高效开发模式! 🚀