介绍
MCP 是一个开放协议,用于标准化应用程序如何向 LLM 提供上下文。可以将 MCP 想象成 AI 应用程序的 USB-C 接口。就像 USB-C 为设备连接各种外设和配件提供标准化方式一样,MCP 为 AI 模型连接不同的数据源和工具提供了标准化的方式。
为什么选择 MCP?
MCP 帮助您在 LLM 之上构建代理和复杂工作流。LLM 经常需要与数据和工具集成,而 MCP 提供:
- 预构建集成列表,您的 LLM 可以直接接入
- 在不同 LLM 提供商和供应商之间切换的灵活性
- 在您的基础设施中保护数据的最佳实践
总体架构
从本质上讲,MCP 遵循客户端-服务器架构,其中主机应用程序可以连接到多个服务器:
- MCP 主机: 像 Claude Desktop、IDE 或 AI 工具等想要通过 MCP 访问数据的程序
- MCP 客户端: 与服务器保持 1:1 连接的协议客户端
- MCP 服务器: 通过标准化的模型上下文协议暴露特定功能的轻量级程序
- 本地数据源: MCP 服务器可以安全访问的计算机文件、数据库和服务
- 远程服务: MCP 服务器可以连接的通过互联网提供的外部系统(例如通过 API)
MCP 的三大核心功能
MCP 服务器可以提供三种主要类型的功能:
1. 工具(Tools)
- 可以被 AI 模型调用的函数
- 需要用户批准才能执行
- 例如:获取天气预报、查询数据库等
2. 资源(Resources)
- 可以被客户端读取的类文件数据
- 如 API 响应或文件内容
- 例如:文档、配置文件等
3. 提示(Prompts)
- 帮助用户完成特定任务的预设模板
- 优化 AI 模型的输出
- 例如:特定格式的写作模板
实际应用示例
以天气查询为例,通过 MCP:
- AI 模型可以获取实时天气数据
- 用户可以询问"今天会下雨吗?"
- AI 会调用相应的天气 API 获取数据
- 然后用自然语言回答用户的问题
这种方式让 AI 模型能够突破其知识的时间限制,获取实时或专门的信息,从而提供更准确和及时的回答。
为什么需要 MCP?
-
扩展性
- 让 AI 模型能够访问外部工具和实时数据
- 可以根据需求添加新的功能和服务
-
标准化
- 提供统一的交互协议
- 简化开发和集成过程
-
安全性
- 通过用户授权机制确保安全使用
- 控制 AI 模型的权限范围
-
灵活性
- 可以根据需求自定义各种功能
- 支持多种编程语言和平台
通过 MCP,开发者可以创建各种工具来增强 AI 模型的能力,使其能够完成更多实际应用场景中的任务。无论是简单的数据查询还是复杂的系统集成,MCP 都提供了一个强大而灵活的解决方案。