三 递归
1. 递归概述
- 递归函数调用自己,如果使用循环,程序的性能可能更高;如果使用递归,程序可能
更容易理解。 - 编写递归函数时,必须告诉它何时停止递归。正因为如此,每个递归函数都有两部分:基线
条件(base case)和递归条件(recursive case)。递归条件指的是函数调用自己,而基线条件则
指的是函数不再调用自己,从而避免形成无限循环。即:递归一定要有出口
2. 栈
-
栈只有两种操作:压入(插入)和弹出(删除并读取)。
-
栈的特点:后进先出
-
递归实际上就是调用了栈
递归调用栈的注意事项:
-
使用栈虽然很方便,但是也要付出代价:存储详尽的信息可能占用大量的内存。每个函数调
用都要占用一定的内存,如果栈很高,就意味着计算机存储了大量函数调用的信息。在这种情况
下,你有两种选择。- 重新编写代码,转而使用循环。
- 使用尾递归。这是一个高级递归主题,不在本书的讨论范围内。另外,并非所有的语言
都支持尾递归。
3. 小结
- 递归指的是调用自己的函数。
- 每个递归函数都有两个条件:基线条件和递归条件。
- 栈有两种操作:压入和弹出。
- 所有函数调用都进入调用栈。
- 调用栈可能很长,这将占用大量的内存。
四 快速排序
1. 分而治之策略
- 找出简单的基线条件;
- 确定如何缩小问题的规模,使其符合基线条件。
2. 快速排序
快速排序是一种常用的排序算法,比选择排序快得多。例如,C语言标准库中的函数qsort
实现的就是快速排序。快速排序也使用了D&C。
排序步骤:
- 选择基准值。
- 将数组分成两个子数组:小于基准值的元素和大于基准值的元素。
- 对这两个子数组进行快速排序(递归调用)。
时间复杂度
-
一般情况下快速排序的时间复杂度为:O(n log n)
-
快速查找的常量比合并查找小,因此如果它们的运行时间都为O(n log n),快速查找的速度将更快。实际上,快速查找的速度确实更快,因为相对于遇上最糟情况,它遇上平均情况的可能性要大得多。
-
快排最坏情况和最好情况
- 快速排序的性能高度依赖于你选择的基准值
- 如果每次数组已经有序,而且每次都选取第一个数为基准值,那调用次数为n,栈长度为O(n),最佳情况下为O(log n ),每一层都将对所有数据进行排序,因此每层时间为O(n)
- 如果是最佳情况,所需时间为O(n) * O(log n) = O(n log n)
- 在最糟情况下,有O(n)层,因此该算法的运行时间为O(n) * O(n) = O(n^2)。
- 最佳情况也是平均情况。只要你每次都随机地选择一个数组元素作为基准值,快速排序的平均运行时间就将为O(n log n)。快速排序是最快的排序算法之一,也是D&C典范。
3. 小结
- D&C将问题逐步分解。使用D&C处理列表时,基线条件很可能是空数组或只包含一个元
素的数组。 - 实现快速排序时,请随机地选择用作基准值的元素。快速排序的平均运行时间为O(n log n)。
- 大O表示法中的常量有时候事关重大,这就是快速排序比合并排序快的原因所在。
- 比较简单查找和二分查找时,常量几乎无关紧要,因为列表很长时,O(log n)的速度比O(n)
快得多。