【汽车篇】01. 行车记录仪自动保存 ❀ 特斯拉 Model 3

本文详细介绍了特斯拉行车记录仪的工作原理,包括其自动保存事故视频的功能、数据保存策略以及如何正确设置和使用U盘。重点讲解了新版本的自动触发机制和如何确保视频数据安全。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  特斯拉本身自带行车记录仪功能,可以将前后左右摄像头拍摄的内容保存到U盘中,虽然不能记录声音,但是有图像也可以起到很大的作用,关键是不用再花钱买行车记录仪。

  很多的人对这个行车记录仪有个误解,那就是应该一直保存数据,直到U盘满了,然后再循环覆盖,可以随时查看最近一段时间的记录。这是常规行车记录仪的功能,但是特斯拉不是这样的,它只记录一个小时的内容,从开车起记录,会删除之前的记录。因此经常会出现一种情况就是,出事故后没有保存记录,第二天再开动车子,发现以前的记录没有了。

OTA升级到2021.24.4后,行车记录仪有个新功能,就是出现事故后会自动保存短片,这个功能会帮助到出了事故就蒙逼的你吗?

由于是读写视频,因此速度很重要,建议购买支持USB 3.0 的SLC高速U盘,价格会贵一些,但是物有所值。官网说存储1小时视频约1.8G,这只是动态的,还有出现事故后保存的记录,因此尽量购买容量大一些的U盘,32G够用了。除非经常用到哨兵功能,那就要买更大的64G或128G。

将U盘插入中控储物箱内USB接口。官方说明,U盘需要格式化成FAT32格式,并且还需要建立一个叫TeslaCam的文件夹,对于电脑盲来说,还有一个更简单的办法。

点击屏幕右下角的汽车图标。

弹出窗口选择【安全&保障】,找到关于行车记录仪的内容,点击【格式化USB设备】。

出现格式化提示,会清除U盘上的所有数据,点击【格式化】。

格式化后,U盘就可以存储行车记录仪视频了。点击右上角的相机图标,查看记录内容,现在是空的。

还是在【安全&保障】,行车记录仪新增了一项【自动】,选择自动和鸣笛,这样就有了两种方式自动保存视频了,一种是按喇叭,一种是自动,那么自动到什么程度呢?我们来试试。

开了几天车后,我们再看来看看U盘上保存了什么内容。右上角的相机图标多了一个红色的圆点,说明有视频可以保存。点开看可以看到两个选项,保存视频,按下后会保存最近十分钟的内容,如果不按,下次车子启动后,这些视频内容(最多一小时)就会被删除。点击【启用查看器】。

可以看到U盘里只有两段视频,一段是最近7:49开车的视频,这个是临时视频,会在第二次开车的时候删除,另一个就是行车记录仪视频,这个视频是会一直保存在U盘上的,直到你自己删除或格式化U盘。

这段临时视频最长为1个小时,由于只开了43分钟,所以可以看到从开车到停车的所有内容。点击后、左、右,可以看到其它三个角度摄像头的内容。注意:临时视频从下次开车后就会删除,所以,如果在这段时间内出现你要保留的视频,除了在上一菜单按【保存视频】(只能保存最后十分钟)外,还有一个简单的办法,就是拨下U盘,然后接在电脑上,把这最后一小时视频拷贝下来。

  出事故后大家的精力都放在查看、拍照、沟通、报警,很少有注意到需要保存这个时间段的视频。等事后想起来,视频已经自动删除了。行车记录仪自动保存功能可以帮我们解决这个问题。

查看行车记录仪这段视频,红色点表示激发时间,保存约十分钟前视频,在以前,激发保存视频的方式有两种,一个是手动点菜单,选择保存视频,另一个就是按喇叭,也会激发保存视频功能,但对不喜欢按喇叭的人来说,这并不友好。

  这段视频保存时,我即没有手动点保存,也没有按喇叭,它是自动保存的。自动保存的原因,有可能是因为边上的电动车离得太近。

  行车记录仪自动保存这个功能非常不错,可以给我们一个额外的安全保障。就是不理解具体在什么情况下会自动激发保存功能。


数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞塔老梅子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值