FVM in CFD 学习笔记_第9章_梯度计算

学习自F. Moukalled, L. Mangani, M. Darwish所著The Finite Volume Method in Computational Fluid Dynamics - An Advanced Introduction with OpenFOAM and Matlab
Chapter 9 Gradient Computation

FVM in CFD 学习笔记_第9章_梯度计算

在CFD的FVM的离散过程中,在单元形心和面形心处变量 ϕ \phi ϕ的梯度是常常要用到的物理量,那么如何由单元形心处的变量 ϕ \phi ϕ来获取单元形心和面形心处的变量 ϕ \phi ϕ的梯度 ∇ ϕ \nabla \phi ϕ呢?本节便讲讲FVM in CFD中梯度的计算方法。

1 笛卡尔网格上梯度的计算

由于笛卡尔网格横平竖直,有很好的正交特性,所以梯度的计算变得十分简单快捷了,对于1维问题,且均匀网格,则面 e e e上的变量梯度可直接得出:

在这里插入图片描述
( ∂ ϕ ∂ x ) e = ϕ E − ϕ C x E − x C = ϕ E − ϕ C δ x e \left(\frac{\partial\phi}{\partial x}\right)_e=\frac{\phi_E-\phi_C}{x_E-x_C}=\frac{\phi_E-\phi_C}{\delta x_e} (xϕ)e=xExCϕEϕC=δxeϕEϕC
单元形心 C C C处的变量梯度也可得出
( ∂ ϕ ∂ x ) C = ϕ e − ϕ w x e − x w = ϕ E + ϕ C 2 − ϕ C + ϕ W 2 Δ x C = ϕ E − ϕ W 2 Δ x C \left(\frac{\partial\phi}{\partial x}\right)_C=\frac{\phi_e-\phi_w}{x_e-x_w}=\frac{\displaystyle \frac{\phi_E+\phi_C}{2}-\frac{\phi_C+\phi_W}{2}}{\Delta x_C}=\frac{\phi_E-\phi_W}{2 \Delta x_C} (xϕ)C=xexwϕeϕw=ΔxC2ϕE+ϕC2ϕC+ϕW=2ΔxCϕEϕW
这个常叫做“中心差分”,对于2维情况,与此类似,可得
在这里插入图片描述
( ∂ ϕ ∂ x ) C = ϕ E − ϕ W x E − x W , ( ∂ ϕ ∂ y ) C = ϕ N − ϕ S x N − x S \left(\frac{\partial\phi}{\partial x}\right)_C=\frac{\phi_E-\phi_W}{x_E-x_W},\quad \left(\frac{\partial\phi}{\partial y}\right)_C=\frac{\phi_N-\phi_S}{x_N-x_S} (xϕ)C=xExWϕEϕW,(yϕ)C=xNxSϕNϕS
当处理非正交网格或非结构网格时,情况就复杂得多了,这就需要用到更加通用方法,即Green-Gauss梯度法和最小二乘梯度法等。

2 Green-Gauss Gradient(格林-高斯梯度)

这是计算梯度方法中应用最广的一个,即,单元形心处变量的梯度可以由面形心处的变量值与面积矢量复合后相加和除以单元体积来获取,用到的数学定理是Green-Gauss或梯度定理,即
∫ V ∇ ϕ d V = ∮ ∂ V ϕ d S ⃗ ⇒ ∇ ϕ ‾ V = ∮ ∂ V ϕ d S ⃗ ⇒ ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \int_V\nabla\phi dV=\oint_{\partial V}\phi d\vec S \Rightarrow \overline{\nabla\phi} V =\oint_{\partial V}\phi d\vec S \Rightarrow \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_f \vec S_f VϕdV=VϕdS ϕV=VϕdS ϕC=VC1fnb(C)ϕfS f

∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_f \vec S_f ϕC=VC1fnb(C)ϕfS f
其中 V C V_C VC为单元体积, f f f代表单元的某个面,而 S ⃗ f \vec S_f S f为该面的面积矢量,面形心的变量值 ϕ f \phi_f ϕf是未知的,仍旧需要计算出来,不然上面这个公式是用不了的。 ϕ f \phi_f ϕf的计算方法有两种,一是用紧致框架(compact stencil)由面左右单元(所属单元和邻居单元,即面两侧单元)形心值来计算,二是用扩展框架(extended stencil)先用面的角点周围单元上的值来得到面的角点值,然后再由角点值来平均得到面形心的值。

方法1:紧致框架

在这里插入图片描述
对于上图(a)和(b)所示的2维和3维情况,一种最简单的方法是直接由面两侧单元形心值平均来获得面上变量的值,即
ϕ f = g C ϕ C + ( 1 − g C ) ϕ F \phi_f=g_C\phi_C+(1-g_C)\phi_F ϕf=gCϕC+(1gC)ϕF
其中 g C g_C gC为几何权重系数,等于
g C = ∣ ∣ r ⃗ F − r ⃗ f ∣ ∣ ∣ ∣ r ⃗ F − r ⃗ C ∣ ∣ = d F f d F C g_C=\frac{||\vec r_F-\vec r_f||}{||\vec r_F-\vec r_C||}=\frac{d_{Ff}}{d_{FC}} gC=r Fr Cr Fr f=dFCdFf
其中 r ⃗ \vec r r 为距离矢量,而 d d d为两点之间的距离值,若该面恰好位于两单元中心的中间位置,则有
ϕ f = ϕ C + ϕ F 2 \phi_f=\frac{\phi_C+\phi_F}{2} ϕf=2ϕC+ϕF
这个方法非常简便易行,然而遗憾的是,只有当线段 C F CF CF和面 S ⃗ f \vec S_f S f的交点与面 S ⃗ f \vec S_f S f的中心重合时(即上图(a)(b)情况),该方法才能保证2阶精度,而大多数情况下,直接由上式算得的梯度精度是没法保证的。

然而,对于通常的非正交网格和非结构网格来说,是没有办法来保证这个条件的,比如上图中的(c)(d)情况,网格的偏斜(非正交,skewness(non-conjunctionality))使得线段 C F CF CF和面 S ⃗ f \vec S_f S f交点为 f ′ f' f,与面形心 f f f是不重合的。此时,需要把插值得到的 ϕ f ′ \phi_{f'} ϕf修正以得到 ϕ f \phi_f ϕf,修正方程为
ϕ f = ϕ f ′ + c o r r e c t i o n = ϕ f ′ + ( ∇ ϕ ) f ′ ⋅ ( r ⃗ f − r ⃗ f ′ ) \phi_f=\phi_{f'}+correction=\phi_{f'}+(\nabla\phi)_{f'}\cdot(\vec r_f-\vec r_{f'}) ϕf=ϕf+correction=ϕf+(ϕ)f(r fr f)
即,用梯度 ( ∇ ϕ ) f ′ (\nabla\phi)_{f'} (ϕ)f来修正,修正也可以展开为如下形式:
ϕ f = g C { ϕ C + ( ∇ ϕ ) C ⋅ ( r ⃗ f − r ⃗ C ) } + ( 1 − g C ) { ϕ F + ( ∇ ϕ ) F ⋅ ( r ⃗ f − r ⃗ F ) } = ϕ f ′ + g C ( ∇ ϕ ) C ⋅ ( r ⃗ f − r ⃗ C ) + ( 1 − g C ) ( ∇ ϕ ) F ⋅ ( r ⃗ f − r ⃗ F ) \phi_f=g_C\{\phi_C+(\nabla\phi)_C\cdot(\vec r_f-\vec r_C)\}+(1-g_C)\{ \phi_F+(\nabla\phi)_F\cdot(\vec r_f-\vec r_F) \}\\ \quad \\ =\phi_{f'}+g_C(\nabla\phi)_C\cdot(\vec r_f-\vec r_C)+(1-g_C)(\nabla\phi)_F\cdot(\vec r_f-\vec r_F) ϕf=gC{ϕC+(ϕ)C(r fr C)}+(1gC){ϕF+(ϕ)F(r fr F)}=ϕf+gC(ϕ)C(r fr C)+(1gC)(ϕ)F(r fr F)
即, { ϕ C + ( ∇ ϕ ) C ⋅ ( r ⃗ f − r ⃗ C ) } \{\phi_C+(\nabla\phi)_C\cdot(\vec r_f-\vec r_C)\} {ϕC+(ϕ)C(r fr C)}是把 C C C处的值修正到 f f f处,而 { ϕ F + ( ∇ ϕ ) F ⋅ ( r ⃗ f − r ⃗ F ) } \{ \phi_F+(\nabla\phi)_F\cdot(\vec r_f-\vec r_F) \} {ϕF+(ϕ)F(r fr F)}是把 F F F处的值修正到 f f f处,然后再做加权插值处理,就得到了 ϕ f \phi_f ϕf

不难发现, ϕ f \phi_f ϕf的修正计算要用到 ( ∇ ϕ ) C (\nabla\phi)_C (ϕ)C ( ∇ ϕ ) F (\nabla\phi)_F (ϕ)F,而 ( ∇ ϕ ) C (\nabla\phi)_C (ϕ)C ( ∇ ϕ ) F (\nabla\phi)_F (ϕ)F则是用 ϕ f \phi_f ϕf算得的,也就是说,这里 ϕ f \phi_f ϕf的计算是不能一蹴而就的,而是一个迭代计算的过程,但是过多的迭代反而会造成解的振荡,一般做两次迭代就好了。

另外, g C g_C gC是与点 f ′ f' f的位置密切相关的,有三种选择方式:

选择1

f ′ f' f就选择在线段 C F CF CF和面 S ⃗ f \vec S_f S f的交点处,以 n ⃗ \vec n n 代表面积单位矢量,即, n ⃗ = S ⃗ f / ∣ ∣ S ⃗ f ∣ ∣ \vec n=\vec S_f/||\vec S_f|| n =S f/S f,以 e ⃗ \vec e e 代表沿着 C F CF CF的单位矢量,即 e ⃗ = C F → / ∣ ∣ C F → ∣ ∣ \vec e=\overrightarrow{CF}/||\overrightarrow{CF}|| e =CF /CF ,则 f ′ f' f的位置可由几何关系算出,为
r ⃗ f ′ = ( r ⃗ f − r ⃗ C ) ⋅ n ⃗ e ⃗ ⋅ n ⃗ e ⃗ + r ⃗ C = r ⃗ f ⋅ n ⃗ e ⃗ ⋅ n ⃗ e ⃗ \vec r_{f'}=\frac{(\vec r_f - \vec r_C) \cdot \vec n}{\vec e \cdot \vec n}\vec e+\vec r_C=\frac{\vec r_f \cdot \vec n}{\vec e \cdot \vec n}\vec e r f=e n (r fr C)n e +r C=e n r fn e
其中, ( r ⃗ f − r ⃗ C ) ⋅ n ⃗ (\vec r_f - \vec r_C) \cdot \vec n (r fr C)n 为点 C C C到面 S ⃗ f \vec S_f S f的垂直距离向量,分母 e ⃗ ⋅ n ⃗ \vec e \cdot \vec n e n 为该垂直向量与 C F → \overrightarrow{CF} CF 夹角的余弦值 c o s θ cos\theta cosθ,于是两者相除便得到了 C C C f ′ f' f的向量 C f ′ → \overrightarrow{Cf'} Cf ,再与 r ⃗ C \vec r_C r C相加便是点 f ′ f' f的位置矢量。
得到 f ′ f' f的位置后,可以直接算出 g C g_C gC的值
g C = ∣ ∣ r ⃗ F − r ⃗ f ′ ∣ ∣ ∣ ∣ r ⃗ F − r ⃗ C ∣ ∣ = d F f ′ d F C g_C=\frac{||\vec r_F - \vec r_{f'}||}{||\vec r_F - \vec r_{C}||}=\frac{d_{Ff'}}{d_{FC}} gC=r Fr Cr Fr f=dFCdFf
计算流程如下:

  1. 计算 ϕ f ′ \phi_{f'} ϕf使用 ϕ f ′ = g C ϕ C + ( 1 − g C ) ϕ F \phi_{f'}=g_C\phi_C+(1-g_C)\phi_F ϕf=gCϕC+(1gC)ϕF
  2. 计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f ′ S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f'} \vec S_f ϕC=VC1fnb(C)ϕfS f
    接下来用下面步骤来修正梯度场
  3. 更新 ϕ f \phi_{f} ϕf使用 ϕ f = ϕ f ′ + g C ( ∇ ϕ ) C ⋅ ( r ⃗ f − r ⃗ C ) + ( 1 − g C ) ( ∇ ϕ ) F ⋅ ( r ⃗ f − r ⃗ F ) \phi_f=\phi_{f'}+g_C(\nabla\phi)_C\cdot(\vec r_f-\vec r_C)+(1-g_C)(\nabla\phi)_F\cdot(\vec r_f-\vec r_F) ϕf=ϕf+gC(ϕ)C(r fr C)+(1gC)(ϕ)F(r fr F)
  4. 计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f} \vec S_f ϕC=VC1fnb(C)ϕfS f
  5. 返回步骤3再迭代一次。
选择2

在这里插入图片描述
f ′ f' f就选择在线段 C F CF CF的中点,相当于 g C = 0.5 g_C=0.5 gC=0.5,这就使得计算简单多了,其计算流程如下:

  1. 计算 ϕ f ′ \phi_{f'} ϕf使用 ϕ f ′ = ϕ C + ϕ F 2 \displaystyle \phi_{f'}=\frac{\phi_C+\phi_F}{2} ϕf=2ϕC+ϕF
  2. 计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f ′ S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f'} \vec S_f ϕC=VC1fnb(C)ϕfS f
    接下来用下面步骤来修正梯度场
  3. 更新 ϕ f \phi_{f} ϕf使用 ϕ f = ϕ f ′ + ( ∇ ϕ ) C + ( ∇ ϕ ) F 2 ⋅ ( r ⃗ f − r ⃗ C + r ⃗ F 2 ) \displaystyle \phi_f=\phi_{f'}+\frac{(\nabla\phi)_C+(\nabla\phi)_F}{2}\cdot\left(\vec r_f-\frac{\vec r_C+\vec r_F}{2}\right) ϕf=ϕf+2(ϕ)C+(ϕ)F(r f2r C+r F)
  4. 计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f} \vec S_f ϕC=VC1fnb(C)ϕfS f
  5. 返回步骤3再迭代一次。
选择3

在这里插入图片描述
f ′ f' f的位置选择要保证距离 f f ′ ff' ff是最短的,即, f f ′ ff' ff是垂直于 C F CF CF的,这使得第1步迭代计算变得更加准确。 f ′ f' f的位置计算很简单,直接把向量 C f → \overrightarrow {Cf} Cf 投影到 C F → \overrightarrow {CF} CF 上就妥了,即
r ⃗ f ′ = r ⃗ C + r ⃗ C f ⋅ r ⃗ C F r ⃗ C F ⋅ r ⃗ C F ( r ⃗ F − r ⃗ C ) \vec r_{f'}=\vec r_C+\frac{\vec r_{Cf} \cdot \vec r_{CF}}{\vec r_{CF} \cdot \vec r_{CF}}(\vec r_F-\vec r_C) r f=r C+r CFr CFr Cfr CF(r Fr C)
其计算流程如下:

  1. 计算 r ⃗ f ′ \vec r_{f'} r f使用 r ⃗ f ′ = r ⃗ C + r ⃗ C f ⋅ r ⃗ C F r ⃗ C F ⋅ r ⃗ C F ( r ⃗ F − r ⃗ C ) \displaystyle\vec r_{f'}=\vec r_C+\frac{\vec r_{Cf} \cdot \vec r_{CF}}{\vec r_{CF} \cdot \vec r_{CF}}(\vec r_F-\vec r_C) r f=r C+r CFr CFr Cfr CF(r Fr C)
  2. 计算 g C g_C gC使用 g C = ∣ ∣ r ⃗ F − r ⃗ f ′ ∣ ∣ ∣ ∣ r ⃗ F − r ⃗ C ∣ ∣ \displaystyle g_C=\frac{||\vec r_F - \vec r_{f'}||}{||\vec r_F - \vec r_C||} gC=r Fr Cr Fr f
  3. 计算 ϕ f ′ \phi_{f'} ϕf使用 ϕ f ′ = g C ϕ C + ( 1 − g C ) ϕ F \phi_{f'}=g_C\phi_C+(1-g_C)\phi_F ϕf=gCϕC+(1gC)ϕF
  4. 计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f ′ S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f'} \vec S_f ϕC=VC1fnb(C)ϕfS f
    接下来用下面步骤来修正梯度场
  5. 计算 ∇ ϕ f ′ \nabla\phi_{f'} ϕf使用 ∇ ϕ f ′ = g C ∇ ϕ C + ( 1 − g C ) ∇ ϕ F \nabla\phi_{f'}=g_C\nabla\phi_C+(1-g_C)\nabla\phi_F ϕf=gCϕC+(1gC)ϕF
  6. 更新 ϕ f \phi_{f} ϕf使用 ϕ f = ϕ f ′ + ∇ ϕ f ′ ⋅ ( r ⃗ f − r ⃗ f ′ ) \phi_f=\phi_{f'}+\nabla\phi_{f'}\cdot(\vec r_f-\vec r_{f'}) ϕf=ϕf+ϕf(r fr f)
  7. 计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f} \vec S_f ϕC=VC1fnb(C)ϕfS f
  8. 返回步骤5再迭代一次。

例1
在这里插入图片描述
上图所示网格,单元形心 C C C与其邻近单元形心 F 1 F_1 F1 F 6 F_6 F6的坐标为
C ( 13 , 11 ) , F 1 ( 4.5 , 9.5 ) , F 2 ( 8 , 3 ) , F 3 ( 17 , 3.5 ) , F 4 ( 22 , 10 ) , F 5 ( 16 , 20 ) , F 6 ( 7 , 18 ) C(13, 11), \quad F_1(4.5,9.5), \quad F_2(8,3), \quad F_3(17,3.5), \quad F_4(22,10), \quad F_5(16,20), \quad F_6(7,18) C(13,11),F1(4.5,9.5),F2(8,3),F3(17,3.5),F4(22,10),F5(16,20),F6(7,18)
角点 n 1 n_1 n1 n 2 n_2 n2的坐标为
n 1 ( 9 , 14 ) , n 2 ( 8 , 8 ) , n 3 ( 12 , 5 ) , n 4 ( 17 , 9 ) , n 5 ( 17.5 , 14 ) , n 6 ( 12 , 17 ) n_1(9,14), \quad n_2(8,8), \quad n_3(12,5), \quad n_4(17,9), \quad n_5(17.5,14), \quad n_6(12,17) n1(9,14),n2(8,8),n3(12,5),n4(17,9),n5(17.5,14),n6(12,17)
变量 ϕ \phi ϕ在单元形心的值为
ϕ C = 167 , ϕ F 1 = 56.75 , ϕ F 2 = 35 , ϕ F 3 = 80 , ϕ F 4 = 252 , ϕ F 5 = 356 , ϕ F 6 = 151 \phi_C=167, \quad \phi_{F_1}=56.75, \quad \phi_{F_2}=35, \quad \phi_{F_3}=80, \quad \phi_{F_4}=252, \quad \phi_{F_5}=356, \quad\phi_{F_6}=151 ϕC=167,ϕF1=56.75,ϕF2=35,ϕF3=80,ϕF4=252,ϕF5=356,ϕF6=151
C单元的邻近单元形心处变量 ϕ \phi ϕ的梯度值 ∇ ϕ \nabla\phi ϕ
∇ ϕ F 1 = 10.5 i + 5.5 j , ∇ ϕ F 2 = 4 i + 9 j , ∇ ϕ F 3 = 4.5 i + 18 j , ∇ ϕ F 4 = 11 i + 23 j , ∇ ϕ F 5 = 21 i + 17 j , ∇ ϕ F 6 = 19 i + 8 j \nabla\phi_{F_1}=10.5\bold i+5.5 \bold j ,\quad \nabla\phi_{F_2}=4\bold i+9 \bold j, \quad \nabla\phi_{F_3}=4.5\bold i+18 \bold j, \\ \nabla\phi_{F_4}=11 \bold i+23 \bold j, \quad \nabla\phi_{F_5}=21 \bold i+17 \bold j, \quad \nabla\phi_{F_6}=19\bold i+8 \bold j ϕF1=10.5i+5.5jϕF2=4i+9j,ϕF3=4.5i+18j,ϕF4=11i+23j,ϕF5=21i+17j,ϕF6=19i+8j
单元C的体积
V C = 76 V_C=76 VC=76
求解单元C形心处的梯度值 ∇ ϕ C \nabla\phi_C ϕC,使用如下方法:
a. Green-Gauss方法,不含修正
b. Green-Gauss方法,含skewness correction, f ′ f' f选择为线段CF的中点

解法a. Green-Gauss方法求解 ∇ ϕ C \nabla\phi_C ϕC,不含修正
计算面形心(2维情况下就是面中心)坐标值
x f 1 = ( x n 1 + x n 2 ) / 2 = ( 9 + 8 ) / 2 = 8.5 y f 1 = ( y n 1 + y n 2 ) / 2 = ( 14 + 8 ) / 2 = 11 x_{f_1}=(x_{n_1}+x_{n_2})/2=(9+8)/2=8.5 \\ y_{f_1}=(y_{n_1}+y_{n_2})/2=(14+8)/2=11 xf1=(xn1+xn2)/2=(9+8)/2=8.5yf1=(yn1+yn2)/2=(14+8)/2=11

f 1 ( 8.5 , 11 ) f_1(8.5, 11) f1(8.5,11)
同样方法算得单元C的其余面的形心坐标
f 2 ( 10 , 6.5 ) , f 3 ( 14.5 , 7 ) , f 4 ( 17.25 , 11.5 ) , f 5 ( 14.75 , 15.5 ) , f 6 ( 10.5 , 15.5 ) f_2(10, 6.5), \quad f_3(14.5, 7), \quad f_4(17.25, 11.5), \quad f_5(14.75, 15.5), \quad f_6(10.5,15.5) f2(10,6.5),f3(14.5,7),f4(17.25,11.5),f5(14.75,15.5),f6(10.5,15.5)
计算面积矢量 S ⃗ f 1 \vec S_{f_1} S f1
S ⃗ f 1 = Δ y i − Δ x j = ( y n 2 − y n 1 ) i − ( x n 2 − x n 1 ) j = ( 8 − 14 ) i − ( 8 − 9 ) j = − 6 i + j \vec S_{f_1}=\Delta y\bold i - \Delta x\bold j=(y_{n_2}-y_{n_1})\bold i - (x_{n_2}-x_{n_1}) \bold j \\ =(8-14)\bold i - (8-9) \bold j=-6\bold i + \bold j S f1=ΔyiΔxj=(yn2yn1)i(xn2xn1)j=(814)i(89)j=6i+j
同样方法算得其余面的面积矢量
S ⃗ f 2 = − 3 i − 4 j S ⃗ f 3 = 4 i − 5 j S ⃗ f 4 = 5 i − 0.5 j S ⃗ f 5 = 3 i + 5.5 j S ⃗ f 6 = − 3 i + 3 j \vec S_{f_2}=-3\bold i -4 \bold j \quad \vec S_{f_3}=4\bold i -5 \bold j \quad \vec S_{f_4}=5\bold i -0.5 \bold j \quad \vec S_{f_5}=3\bold i +5.5 \bold j \quad \vec S_{f_6}=-3\bold i +3 \bold j S f2=3i4jS f3=4i5jS f4=5i0.5jS f5=3i+5.5jS f6=3i+3j
计算插值系数 g C 1 g_{C_1} gC1
g C 1 = F 1 f 1 F 1 f 1 + C f 1 F 1 f 1 = ( 4.5 − 8.5 ) 2 + ( 9.5 − 11 ) 2 = 4.272 C f 1 = ( 13 − 8.5 ) 2 + ( 11 − 11 ) 2 = 4.5 g_{C_1}=\frac{F_1 f_1}{F_1 f_1+Cf_1} \\ \quad \\ F_1 f_1=\sqrt{(4.5-8.5)^2+(9.5-11)^2}=4.272 \\ \quad \\ Cf_1=\sqrt{(13-8.5)^2+(11-11)^2}=4.5 gC1=F1f1+Cf1F1f1F1f1=(4.58.5)2+(9.511)2 =4.272Cf1=(138.5)2+(1111)2 =4.5
算得
g C 1 = 0.487 g_{C_1}=0.487 gC1=0.487
同样,算得其它面的插值系数
g C 2 = 0.427 , g C 3 = 0.502 , g C 4 = 0.538 , g C 5 = 0.492 , g C 6 = 0.455 g_{C_2}=0.427, \quad g_{C_3}=0.502, \quad g_{C_4}=0.538, \quad g_{C_5}=0.492, \quad g_{C_6}=0.455 gC2=0.427,gC3=0.502,gC4=0.538,gC5=0.492,gC6=0.455
计算面形心的变量值 ϕ f \phi_f ϕf
ϕ f 1 = g C 1 ϕ C + ( 1 − g C 1 ) ϕ F 1 = 0.487 ∗ 167 + ( 1 − 0.487 ) ∗ 56.75 = 110.442 \phi_{f_1}=g_{C_1}\phi_C+(1-g_{C_1})\phi_{F_1}=0.487*167+(1-0.487)*56.75=110.442 ϕf1=gC1ϕC+(1gC1)ϕF1=0.487167+(10.487)56.75=110.442
同样算得其它面形心的变量值
ϕ f 2 = 91.364 , ϕ f 3 = 123.674 , ϕ f 4 = 206.27 , ϕ f 5 = 263.012 , ϕ f 6 = 158.28 \phi_{f_2}=91.364, \quad \phi_{f_3}=123.674, \quad \phi_{f_4}=206.27, \quad \phi_{f_5}=263.012, \quad \phi_{f_6}=158.28 ϕf2=91.364,ϕf3=123.674,ϕf4=206.27,ϕf5=263.012,ϕf6=158.28
计算单元形心C处的梯度值
∇ ϕ C = 1 V C ∑ f = 1 6 ϕ f S ⃗ f = 1 76 { [ 110.442 ( − 6 i + j ) + 91.364 ( 3 i − 4 j ) + 123.674 ( 4 i − 5 j ) + 206.27 ( 5 i − 0.5 j ) + 263.012 ( 3 i + 5.5 j ) + 158.28 ( − 3 i + 3 j ) ] } = 11.889 i + 12.433 j \nabla\phi_C = \frac{1}{V_C}\sum_{f=1}^6\phi_{f} \vec S_f \\ =\frac{1}{76}\left\{ \begin{bmatrix} 110.442(-6\bold i + \bold j)+91.364(3\bold i -4 \bold j)+123.674(4\bold i -5 \bold j) \\ +206.27(5\bold i -0.5 \bold j)+263.012(3\bold i +5.5 \bold j)+158.28(-3\bold i +3 \bold j) \end{bmatrix} \right\} \\ = 11.889 \bold i +12.433 \bold j ϕC=VC1f=16ϕfS f=761{[110.442(6i+j)+91.364(3i4j)+123.674(4i5j)+206.27(5i0.5j)+263.012(3i+5.5j)+158.28(3i+3j)]}=11.889i+12.433j

解法b. Green-Gauss方法,含skewness correction, f ′ f' f选择为线段CF的中点
计算CF的中点 f ′ f' f处的变量值,使用公式 ϕ f ′ = ( ϕ C + ϕ F ) / 2 \displaystyle \phi_{f'}=(\phi_C+\phi_F)/2 ϕf=(ϕC+ϕF)/2,得
ϕ f 1 = 111.875 , ϕ f 2 = 101 ϕ f 3 = 123.5 , ϕ f 4 = 209.5 , ϕ f 5 = 261.5 , ϕ f 6 = 159 \phi_{f_1}=111.875, \quad \phi_{f_2}=101 \quad \phi_{f_3}=123.5, \quad \phi_{f_4}=209.5, \quad \phi_{f_5}=261.5, \quad \phi_{f_6}=159 ϕf1=111.875,ϕf2=101ϕf3=123.5,ϕf4=209.5,ϕf5=261.5,ϕf6=159
计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f ′ S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f'} \vec S_f ϕC=VC1fnb(C)ϕfS f,得
∇ ϕ C = 1 V C ∑ f = 1 6 ϕ f S ⃗ f = 1 76 { [ 111.875 ( − 6 i + j ) + 101 ( 3 i − 4 j ) + 123.5 ( 4 i − 5 j ) + 209.5 ( 5 i − 0.5 j ) + 261.5 ( 3 i + 5.5 j ) + 159 ( − 3 i + 3 j ) ] } = 11.510 i + 11.854 j \nabla\phi_C = \frac{1}{V_C}\sum_{f=1}^6\phi_{f} \vec S_f \\ =\frac{1}{76}\left\{ \begin{bmatrix} 111.875(-6\bold i + \bold j)+101(3\bold i -4 \bold j)+123.5(4\bold i -5 \bold j) \\ +209.5(5\bold i -0.5 \bold j)+261.5(3\bold i +5.5 \bold j)+159(-3\bold i +3 \bold j) \end{bmatrix} \right\} \\ = 11.510 \bold i + 11.854 \bold j ϕC=VC1f=16ϕfS f=761{[111.875(6i+j)+101(3i4j)+123.5(4i5j)+209.5(5i0.5j)+261.5(3i+5.5j)+159(3i+3j)]}=11.510i+11.854j
接下来修正梯度值
计算 d ⃗ f = r ⃗ f − r ⃗ C + r ⃗ F 2 \displaystyle \vec d_f = \vec r_f-\frac{\vec r_C+\vec r_F}{2} d f=r f2r C+r F,得
d ⃗ f 1 = − 0.25 i + 0.75 j , d ⃗ f 2 = − 0.5 i − 0.5 j , d ⃗ f 3 = − 0.5 i − 0.25 j , d ⃗ f 4 = − 0.25 i + j , d ⃗ f 5 = − 0.25 i , d ⃗ f 6 = 0.5 i + j \vec d_{f_1}=-0.25\bold i + 0.75\bold j, \quad \vec d_{f_2}=-0.5\bold i -0.5\bold j, \quad \vec d_{f_3}=-0.5\bold i -0.25\bold j, \\ \vec d_{f_4}=-0.25\bold i + \bold j, \quad \vec d_{f_5}=-0.25\bold i, \quad \vec d_{f_6}=0.5\bold i + \bold j d f1=0.25i+0.75j,d f2=0.5i0.5j,d f3=0.5i0.25j,d f4=0.25i+j,d f5=0.25i,d f6=0.5i+j
更新 ϕ f \phi_{f} ϕf使用 ϕ f = ϕ f ′ + ( ∇ ϕ ) C + ( ∇ ϕ ) F 2 ⋅ ( r ⃗ f − r ⃗ C + r ⃗ F 2 ) \displaystyle \phi_f=\phi_{f'}+\frac{(\nabla\phi)_C+(\nabla\phi)_F}{2}\cdot\left(\vec r_f-\frac{\vec r_C+\vec r_F}{2}\right) ϕf=ϕf+2(ϕ)C+(ϕ)F(r f2r C+r F),得
ϕ f 1 = 115.631 , ϕ f 2 = 91.909 ϕ f 3 = 115.766 , ϕ f 4 = 224.113 ϕ f 5 = 265.564 , ϕ f 6 = 176.554 \phi_{f_1}=115.631, \quad \phi_{f_2}=91.909 \quad \phi_{f_3}=115.766, \quad \phi_{f_4}=224.113 \quad \phi_{f_5}=265.564, \quad \phi_{f_6}=176.554 ϕf1=115.631,ϕf2=91.909ϕf3=115.766,ϕf4=224.113ϕf5=265.564,ϕf6=176.554
计算 ∇ ϕ C \nabla\phi_C ϕC使用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f} \vec S_f ϕC=VC1fnb(C)ϕfS f,得
∇ ϕ C = 11.594 i + 13.781 j \nabla\phi_C = 11.594 \bold i + 13.781 \bold j ϕC=11.594i+13.781j
再迭代一次修正过程,得
∇ ϕ C = 11.652 i + 15.793 j \nabla\phi_C = 11.652 \bold i + 15.793 \bold j ϕC=11.652i+15.793j
如果继续迭代修正,你会发现,这个值压根不会收敛,而且会越来越大直至崩溃,也就是说,修正上一次两次就OK了,既不会浪费时间,也不会让值太离谱了。


方法2:扩展框架

由于面是由角点构成的,所以用角点处的值的平均来算得面形心的值就理所当然了,那么角点处的值要如何获取呢?用围绕该角点的单元形心处的值来加权平均计算即可。比较拗口哈,看下图:
在这里插入图片描述

F 1 , F 2 , F 3 F_1, F_2, F_3 F1,F2,F3处的值来算得 n 1 n_1 n1处的值,用 F 2 , F 3 , F 4 F_2, F_3, F_4 F2,F3,F4处的值来算得 n 2 n_2 n2处的值,最后再用 n 1 , n 2 n_1,n_2 n1,n2处的值来算得 f f f处的值,即可。

角点处的值由围绕角点的单元形心处的值加权平均算出,加权系数取为距离的倒数(距离越远,影响越小),即
ϕ n = ∑ k = 1 N B ( n ) ϕ F k ∣ ∣ r ⃗ n − r ⃗ F k ∣ ∣ ∑ k = 1 N B ( n ) 1 ∣ ∣ r ⃗ n − r ⃗ F k ∣ ∣ \displaystyle \phi_n=\frac{\displaystyle \sum_{k=1}^{NB(n)}\frac{\phi_{F_k}}{||\vec r_n-\vec r_{F_k}||}}{\displaystyle \sum_{k=1}^{NB(n)} \frac{1}{{||\vec r_n-\vec r_{F_k}||}}} ϕn=k=1NB(n)r nr Fk1k=1NB(n)r nr FkϕFk
其中 n n n代表角点, F k F_k Fk代表邻近单元, N B ( n ) NB(n) NB(n)为围绕角点 n n n的单元总数, ∣ ∣ r ⃗ n − r ⃗ F k ∣ ∣ ||\vec r_n-\vec r_{F_k}|| r nr Fk为角点到邻近单元形心的距离。

角点值得到后,面形心的值也可得到,以2维问题为例, ϕ f \phi_f ϕf
ϕ f = ϕ n 1 + ϕ n 2 2 \phi_f=\frac{\phi_{n1}+\phi_{n2}}{2} ϕf=2ϕn1+ϕn2
紧接着,可算得单元形心的梯度 ∇ ϕ C \nabla\phi_C ϕC
∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f} \vec S_f ϕC=VC1fnb(C)ϕfS f
对于3维情况,面形心的值 ϕ f \phi_f ϕf由角点值的距离加权平均计算,即
ϕ f = ∑ k = 1 n b ( f ) ϕ n k ∣ ∣ r ⃗ f − r ⃗ n k ∣ ∣ ∑ k = 1 n b ( f ) 1 ∣ ∣ r ⃗ f − r ⃗ n k ∣ ∣ \displaystyle \phi_f=\frac{\displaystyle \sum_{k=1}^{nb(f)}\frac{\phi_{n_k}}{||\vec r_f-\vec r_{n_k}||}}{\displaystyle \sum_{k=1}^{nb(f)} \frac{1}{{||\vec r_f-\vec r_{n_k}||}}} ϕf=k=1nb(f)r fr nk1k=1nb(f)r fr nkϕnk
而单元形心梯度值的计算方法照旧不变。


例2 与例1数据相同,用方法2:扩展框架计算单元中心梯度值

用方法2:扩展框架计算单元中心梯度值
先计算角点与其周围单元形心的距离值 d n F k = ∣ ∣ r ⃗ n − r ⃗ F k ∣ ∣ d_{nF_k}=||\vec r_n-\vec r_{F_k}|| dnFk=r nr Fk,得
d n 1 C = 5 , d n 1 F 6 = 4.472 , d n 1 F 1 = 6.364 d_{n_1C}=5, \quad d_{n_1F_6}=4.472, \quad d_{n_1F_1}=6.364 dn1C=5,dn1F6=4.472,dn1F1=6.364
d n 2 C = 5.831 , d n 2 F 1 = 3.808 , d n 2 F 2 = 5 d_{n_2C}=5.831, \quad d_{n_2F_1}=3.808, \quad d_{n_2F_2}=5 dn2C=5.831,dn2F1=3.808,dn2F2=5
d n 3 C = 6.083 , d n 3 F 2 = 4.472 , d n 3 F 3 = 5.220 d_{n_3C}=6.083, \quad d_{n_3F_2}=4.472, \quad d_{n_3F_3}=5.220 dn3C=6.083,dn3F2=4.472,dn3F3=5.220
d n 4 C = 4.472 , d n 4 F 3 = 5.5 , d n 4 F 4 = 5.099 d_{n_4C}=4.472, \quad d_{n_4F_3}=5.5, \quad d_{n_4F_4}=5.099 dn4C=4.472,dn4F3=5.5,dn4F4=5.099
d n 5 C = 5.408 , d n 5 F 4 = 6.021 , d n 5 F 5 = 6.185 d_{n_5C}=5.408, \quad d_{n_5F_4}=6.021, \quad d_{n_5F_5}=6.185 dn5C=5.408,dn5F4=6.021,dn5F5=6.185
d n 6 C = 6.083 , d n 6 F 5 = 5 , d n 6 F 6 = 5.099 d_{n_6C}=6.083, \quad d_{n_6F_5}=5, \quad d_{n_6F_6}=5.099 dn6C=6.083,dn6F5=5,dn6F6=5.099
用距离倒数作为权系数,由角点周围单元形心值获取角点值,即
ϕ n = ∑ k = 1 N B ( n ) ϕ F k ∣ ∣ r ⃗ n − r ⃗ F k ∣ ∣ ∑ k = 1 N B ( n ) 1 ∣ ∣ r ⃗ n − r ⃗ F k ∣ ∣ \displaystyle \phi_n=\frac{\displaystyle \sum_{k=1}^{NB(n)}\frac{\phi_{F_k}}{||\vec r_n-\vec r_{F_k}||}}{\displaystyle \sum_{k=1}^{NB(n)} \frac{1}{{||\vec r_n-\vec r_{F_k}||}}} ϕn=k=1NB(n)r nr Fk1k=1NB(n)r nr FkϕFk

ϕ n 1 = 131.008 , ϕ n 2 = 79.708 ϕ n 3 = 87.317 , ϕ n 4 = 168.416 ϕ n 5 = 254.144 , ϕ n 6 = 228.840 \phi_{n_1}=131.008, \quad \phi_{n_2}=79.708 \quad \phi_{n_3}=87.317, \quad \phi_{n_4}=168.416 \quad \phi_{n_5}=254.144, \quad \phi_{n_6}=228.840 ϕn1=131.008,ϕn2=79.708ϕn3=87.317,ϕn4=168.416ϕn5=254.144,ϕn6=228.840
计算面形心处的变量值,用面角点值平均来获取,例如 ϕ f 1 = ( ϕ n 1 + ϕ n 2 ) / 2 \phi_{f1}=(\phi_{n1} + \phi_{n2})/2 ϕf1=(ϕn1+ϕn2)/2,得
ϕ f 1 = 105.358 , ϕ f 2 = 83.512 ϕ f 3 = 127.866 , ϕ f 4 = 211.280 ϕ f 5 = 241.492 , ϕ f 6 = 179.924 \phi_{f_1}=105.358, \quad \phi_{f_2}=83.512 \quad \phi_{f_3}=127.866, \quad \phi_{f_4}=211.280 \quad \phi_{f_5}=241.492, \quad \phi_{f_6}=179.924 ϕf1=105.358,ϕf2=83.512ϕf3=127.866,ϕf4=211.280ϕf5=241.492,ϕf6=179.924
计算单元中心梯度值,用 ∇ ϕ C = 1 V C ∑ f − n b ( C ) ϕ f S ⃗ f \displaystyle \nabla\phi_C = \frac{1}{V_C}\sum_{f-nb(C)}\phi_{f} \vec S_f ϕC=VC1fnb(C)ϕfS f,得
∇ ϕ C = 11.446 i + 11.767 j \nabla\phi_C = 11.446 \bold i + 11.767 \bold j ϕC=11.446i+11.767j


3 Least-Square Gradient(最小二乘梯度)

最小二乘法计算梯度,提供了更高的精度,以及更加灵活的选择,用的框架点也更多,然而其需要计算较多的加权系数,当然计算消耗也比较大。

在这里插入图片描述
考虑上图,单元 C C C有第1层邻近单元和第2层邻近单元,那么,如果单元形心的梯度 ∇ ϕ C \nabla\phi_C ϕC是精确的话,有
ϕ F = ϕ C + ( ∇ ϕ ) C ⋅ ( r ⃗ F − r ⃗ C ) \phi_F=\phi_C+(\nabla\phi)_C\cdot(\vec r_F - \vec r_C) ϕF=ϕC+(ϕ)C(r Fr C)
在最小二乘法中,设法让上式算得的单元邻近单元值的加权加和值最小,即找到如下函数的最小值
G C = ∑ k = 1 N B ( C ) { w k [ ϕ F k − ( ϕ C + ( ∇ ϕ ) C ⋅ r ⃗ C F k ) ] 2 } = ∑ k = 1 N B ( C ) { w k [ Δ ϕ k − ( Δ x k ( ∂ ϕ ∂ x ) C + Δ y k ( ∂ ϕ ∂ y ) C + Δ z k ( ∂ ϕ ∂ z ) C ) ] 2 } G_C=\sum_{k=1}^{NB(C)}\{ w_k[\phi_{F_k}-(\phi_C+(\nabla\phi)_C\cdot\vec r_{CF_k})]^2 \} \\ =\sum_{k=1}^{NB(C)}\left\{ w_k\left[\Delta\phi_k - \left( \Delta x_k\left(\frac{\partial\phi}{\partial x}\right)_C + \Delta y_k\left(\frac{\partial\phi}{\partial y}\right)_C + \Delta z_k\left(\frac{\partial\phi}{\partial z}\right)_C \right) \right]^2 \right\} GC=k=1NB(C){wk[ϕFk(ϕC+(ϕ)Cr CFk)]2}=k=1NB(C){wk[Δϕk(Δxk(xϕ)C+Δyk(yϕ)C+Δzk(zϕ)C)]2}
其中 w k w_k wk为加权系数
Δ ϕ k = ϕ F k − ϕ C Δ x k = r ⃗ C F k ⋅ i ⃗ Δ y k = r ⃗ C F k ⋅ j ⃗ Δ z k = r ⃗ C F k ⋅ k ⃗ \Delta\phi_k=\phi_{F_k}-\phi_C \\ \quad \\ \Delta x_k=\vec r_{CF_k}\cdot\vec i \\ \quad \\ \Delta y_k=\vec r_{CF_k}\cdot\vec j \\ \quad \\ \Delta z_k=\vec r_{CF_k}\cdot\vec k Δϕk=ϕFkϕCΔxk=r CFki Δyk=r CFkj Δzk=r CFkk
G C G_C GC函数的最小值应满足如下条件
∂ G C ∂ ( ∂ ϕ ∂ x ) = ∂ G C ∂ ( ∂ ϕ ∂ y ) = ∂ G C ∂ ( ∂ ϕ ∂ z ) = 0 \frac{\partial G_C}{\partial \displaystyle \left( \frac{\partial\phi}{\partial x} \right)} = \frac{\partial G_C}{\partial \displaystyle \left( \frac{\partial\phi}{\partial y} \right)} =\frac{\partial G_C}{\partial \displaystyle \left( \frac{\partial\phi}{\partial z} \right)} = 0 (xϕ)GC=(yϕ)GC=(zϕ)GC=0
得到了如下含三个未知量的三个方程
∑ k = 1 N B ( C ) { 2 w k Δ x k [ − Δ ϕ k + Δ x k ( ∂ ϕ ∂ x ) C + Δ y k ( ∂ ϕ ∂ y ) C + Δ z k ( ∂ ϕ ∂ z ) C ] } = 0 ∑ k = 1 N B ( C ) { 2 w k Δ y k [ − Δ ϕ k + Δ x k ( ∂ ϕ ∂ x ) C + Δ y k ( ∂ ϕ ∂ y ) C + Δ z k ( ∂ ϕ ∂ z ) C ] } = 0 ∑ k = 1 N B ( C ) { 2 w k Δ z k [ − Δ ϕ k + Δ x k ( ∂ ϕ ∂ x ) C + Δ y k ( ∂ ϕ ∂ y ) C + Δ z k ( ∂ ϕ ∂ z ) C ] } = 0 \sum_{k=1}^{NB(C)}\left\{ 2w_k\Delta x_k\left[-\Delta\phi_k + \Delta x_k\left(\frac{\partial\phi}{\partial x}\right)_C + \Delta y_k\left(\frac{\partial\phi}{\partial y}\right)_C + \Delta z_k\left(\frac{\partial\phi}{\partial z}\right)_C \right] \right\}=0 \\ \sum_{k=1}^{NB(C)}\left\{ 2w_k\Delta y_k\left[-\Delta\phi_k + \Delta x_k\left(\frac{\partial\phi}{\partial x}\right)_C + \Delta y_k\left(\frac{\partial\phi}{\partial y}\right)_C + \Delta z_k\left(\frac{\partial\phi}{\partial z}\right)_C \right] \right\}=0 \\ \sum_{k=1}^{NB(C)}\left\{ 2w_k\Delta z_k\left[-\Delta\phi_k + \Delta x_k\left(\frac{\partial\phi}{\partial x}\right)_C + \Delta y_k\left(\frac{\partial\phi}{\partial y}\right)_C + \Delta z_k\left(\frac{\partial\phi}{\partial z}\right)_C \right] \right\}=0 k=1NB(C){2wkΔxk[Δϕk+Δxk(xϕ)C+Δyk(yϕ)C+Δzk(zϕ)C]}=0k=1NB(C){2wkΔyk[Δϕk+Δxk(xϕ)C+Δyk(yϕ)C+Δzk(zϕ)C]}=0k=1NB(C){2wkΔzk[Δϕk+Δxk(xϕ)C+Δyk(yϕ)C+Δzk(zϕ)C]}=0
可以写成矩阵形式
[ ∑ k = 1 N B ( C ) w k Δ x k Δ x k ∑ k = 1 N B ( C ) w k Δ x k Δ y k ∑ k = 1 N B ( C ) w k Δ x k Δ z k ∑ k = 1 N B ( C ) w k Δ y k Δ x k ∑ k = 1 N B ( C ) w k Δ y k Δ y k ∑ k = 1 N B ( C ) w k Δ y k Δ z k ∑ k = 1 N B ( C ) w k Δ z k Δ x k ∑ k = 1 N B ( C ) w k Δ z k Δ y k ∑ k = 1 N B ( C ) w k Δ z k Δ z k ] [ ( ∂ ϕ ∂ x ) C ( ∂ ϕ ∂ y ) C ( ∂ ϕ ∂ z ) C ] = [ ∑ k = 1 N B ( C ) w k Δ x k Δ ϕ k ∑ k = 1 N B ( C ) w k Δ y k Δ ϕ k ∑ k = 1 N B ( C ) w k Δ z k Δ ϕ k ] \begin{bmatrix} \displaystyle \sum_{k=1}^{NB(C)}w_k\Delta x_k\Delta x_k & \sum_{k=1}^{NB(C)}w_k\Delta x_k\Delta y_k & \sum_{k=1}^{NB(C)}w_k\Delta x_k\Delta z_k \\ \displaystyle \sum_{k=1}^{NB(C)}w_k\Delta y_k\Delta x_k & \sum_{k=1}^{NB(C)}w_k\Delta y_k\Delta y_k & \sum_{k=1}^{NB(C)}w_k\Delta y_k\Delta z_k \\ \displaystyle \sum_{k=1}^{NB(C)}w_k\Delta z_k\Delta x_k & \sum_{k=1}^{NB(C)}w_k\Delta z_k\Delta y_k & \sum_{k=1}^{NB(C)}w_k\Delta z_k\Delta z_k \\ \end{bmatrix} \begin{bmatrix} \displaystyle \left(\frac{\partial\phi}{\partial x}\right)_C \\ \\ \displaystyle \left(\frac{\partial\phi}{\partial y}\right)_C \\ \\ \displaystyle \left(\frac{\partial\phi}{\partial z}\right)_C \end{bmatrix} = \begin{bmatrix} \displaystyle \sum_{k=1}^{NB(C)}w_k\Delta x_k\Delta \phi_k \\ \displaystyle \sum_{k=1}^{NB(C)}w_k\Delta y_k\Delta \phi_k \\ \displaystyle \sum_{k=1}^{NB(C)}w_k\Delta z_k\Delta \phi_k \end{bmatrix} k=1NB(C)wkΔxkΔxkk=1NB(C)wkΔykΔxkk=1NB(C)wkΔzkΔxkk=1NB(C)wkΔxkΔykk=1NB(C)wkΔykΔykk=1NB(C)wkΔzkΔykk=1NB(C)wkΔxkΔzkk=1NB(C)wkΔykΔzkk=1NB(C)wkΔzkΔzk(xϕ)C(yϕ)C(zϕ)C=k=1NB(C)wkΔxkΔϕkk=1NB(C)wkΔykΔϕkk=1NB(C)wkΔzkΔϕk
求解上述方程组,便可得到单元形心的梯度值 ∇ ϕ C \nabla\phi_C ϕC,只要左端项矩阵不奇异,即存在解。 w k w_k wk的选择是至关重要的,比如把它设成1就不太合适了,常见的设置方法是距离的倒数,即
w k = 1 ∣ ∣ r ⃗ F k − r ⃗ C ∣ ∣ = 1 Δ x F k 2 + Δ y F k 2 + Δ z F k 2 w_k=\frac{1}{||\vec r_{F_k}-\vec r_C||}=\frac{1}{\sqrt{\Delta x_{F_k}^2+\Delta y_{F_k}^2 + \Delta z_{F_k}^2}} wk=r Fkr C1=ΔxFk2+ΔyFk2+ΔzFk2 1
也可以用距离的 n n n次幂的倒数来做加权系数,即
w k = 1 ∣ ∣ r ⃗ F k − r ⃗ C ∣ ∣ n w_k=\frac{1}{||\vec r_{F_k}-\vec r_C||^n} wk=r Fkr Cn1
幂次 n n n可以是1,2,3等。

4 梯度插值到面

在这里插入图片描述
同样地,由面两侧的单元值插值获取,然后再做修正,修正的原则是让面梯度沿着 C F CF CF方向的值与由 C C C F F F ϕ \phi ϕ值定义的局部梯度相等,如此,面梯度 ∇ ϕ f \nabla\phi_f ϕf
∇ ϕ f = ∇ ϕ f ‾ + [ ϕ F − ϕ C d C F − ( ∇ ϕ f ‾ ⋅ e ⃗ C F ) ] e ⃗ C F \nabla\phi_f=\overline{\nabla\phi_f}+\left[\frac{\phi_F-\phi_C}{d_{CF}}-(\overline{\nabla\phi_f}\cdot\vec e_{CF})\right]\vec e_{CF} ϕf=ϕf+[dCFϕFϕC(ϕfe CF)]e CF
其中
∇ ϕ f ‾ = g C ∇ ϕ C + g F ∇ ϕ F \overline{\nabla\phi_f}=g_C\nabla\phi_C+g_F\nabla\phi_F ϕf=gCϕC+gFϕF
e ⃗ C F = d ⃗ C F d C F \vec e_{CF}=\frac{\vec d_{CF}}{d_{CF}} e CF=dCFd CF
d ⃗ C F = r ⃗ F − r ⃗ C \vec d_{CF}=\vec r_F - \vec r_C d CF=r Fr C

补充一些个人领悟:这里从单元梯度计算面梯度的过程,其思想是这样子的,在 e ⃗ C F \vec{e}_{CF} e CF方向上的梯度由 ϕ F − ϕ C d C F e ⃗ C F \displaystyle\frac{\phi_F-\phi_C}{d_{CF}}\vec e_{CF} dCFϕFϕCe CF给出;而在垂直于 e ⃗ C F \vec{e}_{CF} e CF方向上的梯度则由原本两侧owner和neighbour单元(所属和邻近单元)的梯度值插值到面上的梯度值 ∇ ϕ f ‾ = g C ∇ ϕ C + g F ∇ ϕ F \overline{\nabla\phi_f}=g_C\nabla\phi_C+g_F\nabla\phi_F ϕf=gCϕC+gFϕF在垂直于 e ⃗ C F \vec{e}_{CF} e CF方向上的分量来给出,即 ∇ ϕ f ‾ − ( ∇ ϕ f ‾ ⋅ e ⃗ C F ) e ⃗ C F \overline{\nabla\phi_f}-(\overline{\nabla\phi_f}\cdot\vec e_{CF})\vec e_{CF} ϕf(ϕfe CF)e CF;如此一来,把 e ⃗ C F \vec{e}_{CF} e CF方向和垂直于 e ⃗ C F \vec{e}_{CF} e CF方向这两个方向上梯度值复合在一起,便是面上的梯度值了,即
∇ ϕ f = ∇ ϕ f ‾ + [ ϕ F − ϕ C d C F − ( ∇ ϕ f ‾ ⋅ e ⃗ C F ) ] e ⃗ C F \nabla\phi_f=\overline{\nabla\phi_f}+\left[\frac{\phi_F-\phi_C}{d_{CF}}-(\overline{\nabla\phi_f}\cdot\vec e_{CF})\right]\vec e_{CF} ϕf=ϕf+[dCFϕFϕC(ϕfe CF)]e CF

5 代码讲解

5.1 uFVM

在uFVM中,cfdComputeGradientGauss0和cfdComputeGradientNodal函数是用来计算单元梯度的,Gauss梯度函数输入的是单元变量值phi的数组,返回的是单元梯度值phiGrad的数组,其中面形心变量是用几何权系数从两侧单元形心值插值获取的,并没有做非正交偏斜修正操作,因为这个函数里的0表明是不带修正的。cfdComputeGradientGauss0和cfdComputeGradientNodal函数分别对应本章理论部分的紧致框架和扩展框架,cfdComputeGradientGauss0函数及个人理解如下

function phiGrad = cfdComputeGradientGauss0(phi, theMesh)
%===================================================
% written by the CFD Group @ AUB, Fall 2006
%===================================================
%
if(nargin<2)    % 如果函数输入参数小于2个,则提取网格信息theMesh
    theMesh = cfdGetMesh;
end

theSize = size(phi);    % 输入的单元场phi的维数 [长度, 分量数目]
theNumberOfComponents = theSize(2); % 变量phi的分量数目(标量1、矢量3、张量9% 如果分量数目多于3个,无法处理,直接报错,
% 因为标量的梯度为矢量,而矢量的梯度为张量,那么张量的梯度是啥呢??没有呢~
if(theNumberOfComponents > 3)
    echo('********* ERROR **********');
    exit;
end
%-----------------------------------------------------
% INTERIOR FACES contribution to gradient
%-----------------------------------------------------
iFaces = 1:theMesh.numberOfInteriorFaces;   % 内部面标识列表
iBFaces = theMesh.numberOfInteriorFaces+1:theMesh.numberOfFaces; % 边界面标识列表
iElements = 1:theMesh.numberOfElements;     % 单元标识列表
iBElements = theMesh.numberOfElements+1:theMesh.numberOfElements+...
    theMesh.numberOfBFaces; % 边界单元标识列表

iOwners = [theMesh.faces(iFaces).iOwner]';  % 内部面owner单元标识列表
iNeighbours = [theMesh.faces(iFaces).iNeighbour]';  % 内部面neighbour单元标识列表

Sf = [theMesh.faces(iFaces).Sf]';           % 内部面面积矢量列表
gf = [theMesh.faces(iFaces).gf]';           % 内部面的插值几何权重系数列表

%-----------------------------------------------------
% Initialize phiGrad Array
%-----------------------------------------------------

% phiGrad存储在单元场上,总共有单元数目+边界单元数目个量,每个量有分量*3个值
phiGrad = zeros(theMesh.numberOfElements+theMesh.numberOfBElements, ...
    3,theNumberOfComponents); 

% 每个分量依次计算梯度值
for iComponent=1:theNumberOfComponents
    % 插值由面两侧单元形心处变量的值计算面形心处变量的值
    phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent);
    % 对内部面做循环,将 面形心处变量值*面面积矢量 累加到面的own单元形心梯度值上
    % 累减到面的neighbour单元形心梯度值上去
    for iFace=iFaces
        phiGrad(iOwners(iFace),:,iComponent) = ...
                phiGrad(iOwners(iFace),:,iComponent) + phi_f(iFace)*Sf(iFace,:);
        phiGrad(iNeighbours(iFace),:,iComponent) = ...
            phiGrad(iNeighbours(iFace),:,iComponent) - phi_f(iFace)*Sf(iFace,:);
    end
end

%-----------------------------------------------------
% BOUNDARY FACES contribution to gradient 边界面对梯度的贡献
%-----------------------------------------------------
iBOwners = [theMesh.faces(iBFaces).iOwner]';    % 边界面的own单元标识列表
phi_b = phi(iBElements,:); % 边界单元的变量值
Sb = [theMesh.faces(iBFaces).Sf]';  % 边界面的面积矢量值
for iComponent=1:theNumberOfComponents  % 每个变量得分量依次计算梯度
    % 每片边界patch依次处理    
    % 将 边界面变量值*边界面面积矢量值 累加到边界面的own单元形心梯度值上去
    for k=1:theMesh.numberOfBFaces  
        phiGrad(iBOwners(k),:,iComponent) = ...
            phiGrad(iBOwners(k),:,iComponent) + phi_b(k)*Sb(k,:);
    end
end

%-----------------------------------------------------
% Get Average Gradient by dividing with element volume
%-----------------------------------------------------
volumes = [theMesh.elements(iElements).volume]';    % 单元体积列表
for iComponent=1:theNumberOfComponents % 每个分量依次处理
    for iElement =1:theMesh.numberOfElements % 做体积平均,完成梯度计算
        phiGrad(iElement,:,iComponent) = phiGrad(iElement,:,iComponent) /...
            volumes(iElement);
    end
end
%-----------------------------------------------------
% Set boundary Gradient equal to associated element
% Gradient
%-----------------------------------------------------
% 对于边界单元来说,直接把它的梯度值用边界面的所属单元形心的梯度值赋给即可,
% 因为边界单元的编码是和边界面的编码顺序一致的,所以直接这么操作是没问题的。
phiGrad(iBElements,:,:) = phiGrad(iBOwners,:,:);
end

节点梯度函数,如下所示,与Gauss梯度函数非常相似,只是它用到了cfdInterpolateFromElementsToNodes和cfdInterpolateFromNodesToFaces来把phi值插值到面上去(先把phi插值由单元形心插值到节点,然后再由节点插值到面上),然后再用Gauss定理去计算单元形心梯度,这个函数如下,由于和Guass梯度函数几乎一样,所以不再注释了

%
%=====================================================
% INTERIOR Gradients
%=====================================================
theNumberOfElements = theMesh.numberOfElements;
theNumberOfBElements = theMesh.numberOfBElements;
theNumberOfInteriorFaces = theMesh.numberOfInteriorFaces;
%
phiNodes = cfdInterpolateFromElementsToNodes(phi);
phi_f = cfdInterpolateFromNodesToFaces(phiNodes);
%
phiGrad = zeros(3,theNumberOfElements+theNumberOfBElements);
%-----------------------------------------------------
% INTERIOR FACES contribution to gradient
%-----------------------------------------------------
fvmFaces = theMesh.faces;
% interpolate phi to faces
%
for iFace=1:theNumberOfInteriorFaces
    %
    theFace = fvmFaces(iFace);
    %
    iElement1 = theFace.iOwner;
    iElement2 = theFace.iNeighbour;
    %
    Sf = theFace.Sf;
    %
    %
    phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_f(iFace)*Sf;
    phiGrad(:,iElement2) = phiGrad(:,iElement2) - phi_f(iFace)*Sf;
end
%=====================================================
% BOUNDARY FACES contribution to gradient
%=====================================================
for iBPatch=1:theNumberOfBElements
    %
    iBFace = theNumberOfInteriorFaces+iBPatch;
    iBElement = theNumberOfElements+iBPatch;
    theFace = fvmFaces(iBFace);
    %
    iElement1 = theFace.iOwner;
    %
    Sb = theFace.Sf;
    phi_b = phi(iBElement);
    %
    phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_b*Sf;
end
%-----------------------------------------------------
% Get Average Gradient by dividing with element volume
%-----------------------------------------------------
for iElement =1:theNumberOfElements
    theElement = fvmElements(iElement);
    phiGrad(:,iElement) = phiGrad(:,iElement)/theElement.volume;
end
%-----------------------------------------------------
% Set boundary Gradient equal to associated element
% Gradient
%-----------------------------------------------------
for iBPatch = 1:theNumberOfBElements
    iBElement = iBPatch+theNumberOfElements;
    iBFace = iBPatch+theNumberOfInteriorFaces;
    theBFace = fvmFaces(iBFace);
    iOwner = theBFace.iOwner;
    phiGrad(:,iBElement) = phiGrad(:,iOwner);
end

面梯度值(面形心处变量梯度值)的计算是由两侧单元梯度值(单元形心处存储的变量梯度值)插值获取的,该操作是通过CFDInterpolateGradientsFromElementsToInteriorFaces函数来实现的。该函数的输入量有插值格式theInterpolationScheme、单元梯度grad,单元phi值,mdot通量值,可以使用迎风或背风格式。如下

function grad_f=cfdInterpolateGradientsFromElementsToInteriorFaces...
    (theInterpolationScheme,grad,phi,mdot_f)
%===================================================
% written by the CFD Group @ AUB, Fall 2006
%===================================================

theMesh= cfdGetMesh;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

iOwners = [theMesh.faces(1:numberOfInteriorFaces).iOwner]';
iNeighbours = [theMesh.faces(1:numberOfInteriorFaces).iNeighbour]';
gf = [theMesh.faces(1:numberOfInteriorFaces).gf]';

if(strcmp(theInterpolationScheme,'Average')==1)
    grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);
    grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);
    grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);
    
elseif(strcmp(theInterpolationScheme,'Upwind')==1)
    pos = zeros(size(mdot_f));
    pos((mdot_f>0))=1;
    %
    grad_f(:,1) = pos.*grad(iNeighbours,1) + (1-pos).*grad(iOwners,1);
    grad_f(:,2) = pos.*grad(iNeighbours,2) + (1-pos).*grad(iOwners,2);
    grad_f(:,3) = pos.*grad(iNeighbours,3) + (1-pos).*grad(iOwners,3);
elseif(strcmp(theInterpolationScheme,'Downwind')==1)
    pos = zeros(size(mdot_f));
    pos((mdot_f>0))=1;
    %
    grad_f(:,1) = (1-pos).*grad(iNeighbours,1) + pos.*grad(iOwners,1);
    grad_f(:,2) = (1-pos).*grad(iNeighbours,2) + pos.*grad(iOwners,2);
    grad_f(:,3) = (1-pos).*grad(iNeighbours,3) + pos.*grad(iOwners,3);
elseif(strcmp(theInterpolationScheme,'Average:Corrected')==1)
    grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);
    grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);
    grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);
    
    d_CF = [theMesh.elements(iNeighbours).centroid]' - ...
        [theMesh.elements(iOwners).centroid]';
    dmag=cfdMagnitude(d_CF);
    
    e_CF(:,1)=d_CF(:,1)./dmag;
    e_CF(:,2)=d_CF(:,2)./dmag;
    e_CF(:,3)=d_CF(:,3)./dmag;
    
    local_grad_mag_f = (phi(iNeighbours)-phi(iOwners))./dmag;
    local_grad(:,1) = local_grad_mag_f.*e_CF(:,1);
    local_grad(:,2) = local_grad_mag_f.*e_CF(:,2);
    local_grad(:,3) = local_grad_mag_f.*e_CF(:,3);
    
    local_avg_grad_mag = dot(grad_f',e_CF')';
    local_avg_grad(:,1)=local_avg_grad_mag.*e_CF(:,1);
    local_avg_grad(:,2)=local_avg_grad_mag.*e_CF(:,2);
    local_avg_grad(:,3)=local_avg_grad_mag.*e_CF(:,3);
    grad_f = grad_f - local_avg_grad + local_grad;
else
    disp([theInterpolationScheme;grad;phi;mdot_f]);
    exit;
end

注意,面插值格式theInterpolationScheme若为"Average:Corrected",则会使用更为准确的修正方式来计算面梯度值,即沿着CF方向的修正,即本章第4部分所讲内容,跟如下式子是完全对应的。
∇ ϕ f = ∇ ϕ f ‾ + [ ϕ F − ϕ C d C F − ( ∇ ϕ f ‾ ⋅ e ⃗ C F ) ] e ⃗ C F \nabla\phi_f=\overline{\nabla\phi_f}+\left[\frac{\phi_F-\phi_C}{d_{CF}}-(\overline{\nabla\phi_f}\cdot\vec e_{CF})\right]\vec e_{CF} ϕf=ϕf+[dCFϕFϕC(ϕfe CF)]e CF
其中
∇ ϕ f ‾ = g C ∇ ϕ C + g F ∇ ϕ F \overline{\nabla\phi_f}=g_C\nabla\phi_C+g_F\nabla\phi_F ϕf=gCϕC+gFϕF
e ⃗ C F = d ⃗ C F d C F \vec e_{CF}=\frac{\vec d_{CF}}{d_{CF}} e CF=dCFd CF
d ⃗ C F = r ⃗ F − r ⃗ C \vec d_{CF}=\vec r_F - \vec r_C d CF=r Fr C

5.2 OpenFOAM

to be continued…

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值