【CFD理论】梯度项-LeastSquare Gradient-02


知识回顾:

扩散项 ⇒ ( ∇ ϕ ) f ⇒ ( ∇ ϕ ) p = 1 V P ∑ ϕ f S f 扩散项\Rightarrow(\nabla \phi)_f \Rightarrow (\nabla \phi)_p=\frac{1}{V_P}\sum \phi_f \boldsymbol S_f 扩散项(ϕ)f(ϕ)p=VP1ϕfSf

以温度为例 : ( ∇ T ) C = 1 V P ( T f 1 S f 1 + T f 2 S f 2 + T f 3 S f 3 + T f 4 S f 4 + T f 5 S f 5 + T f 6 S f 6 ) 以温度为例:(\nabla T)_C=\frac{1}{V_P}(T_{f1}\boldsymbol S_{f1}+T_{f2}\boldsymbol S_{f2}+T_{f3}\boldsymbol S_{f3}+T_{f4}\boldsymbol S_{f4}+T_{f5}\boldsymbol S_{f5}+T_{f6}\boldsymbol S_{f6}) 以温度为例:(T)C=VP1(Tf1Sf1+Tf2Sf2+Tf3Sf3+Tf4Sf4+Tf5Sf5+Tf6Sf6)

方法1:

( ∇ T ) P = [ ∂ T ∂ x ∂ T ∂ y ∂ T ∂ z ] (\nabla T)_P= \left [ \begin{matrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y}\\ \frac{\partial T}{\partial z}\\ \end{matrix} \right ] (T)P= xTyTzT
T N = T P + d P N ⋅ ( ∇ T ) P T_N=T_P+\boldsymbol d_{PN}\cdot(\nabla T)_P TN=TP+dPN(T)P
ϕ N = ϕ P + ( ∇ ϕ ) P ⋅ ( r N − r P ) \phi_N=\phi_P+(\nabla \phi)_P\cdot (\boldsymbol r_N-\boldsymbol r_P) ϕN=ϕP+(ϕ)P(rNrP)
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) 2 f(x)=f(x_0)+f'(x_0)(x-x_0)^2 f(x)=f(x0)+f(x0)(xx0)2
在这里插入图片描述
在这里插入图片描述

Least-Square Derivation

T 1 = T P + ( ∇ T ) P ⋅ d P N 1 T 2 = T P + ( ∇ T ) P ⋅ d P N 2 T 3 = T P + ( ∇ T ) P ⋅ d P N 3 T 4 = T P + ( ∇ T ) P ⋅ d P N 4 T 5 = T P + ( ∇ T ) P ⋅ d P N 5 T 6 = T P + ( ∇ T ) P ⋅ d P N 6 } ⇒ [ T 1 − T P = ( ∇ T ) P ⋅ r P N 1 T 2 − T P = ( ∇ T ) P ⋅ r P N 2 T 3 − T P = ( ∇ T ) P ⋅ r P N 3 T 4 − T P = ( ∇ T ) P ⋅ r P N 4 T 5 − T P = ( ∇ T ) P ⋅ r P N 5 T 6 − T P = ( ∇ T ) P ⋅ r P N 6 ] \left. \begin{array}{lll} T_1=T_P+(\nabla T)_P\cdot\boldsymbol d_{PN1}\\ T_2=T_P+(\nabla T)_P\cdot\boldsymbol d_{PN2}\\ T_3=T_P+(\nabla T)_P\cdot\boldsymbol d_{PN3}\\ T_4=T_P+(\nabla T)_P\cdot\boldsymbol d_{PN4}\\ T_5=T_P+(\nabla T)_P\cdot\boldsymbol d_{PN5}\\ T_6=T_P+(\nabla T)_P\cdot\boldsymbol d_{PN6}\\ \end{array} \right\} \Rightarrow \begin{aligned} \left [ \begin{matrix} T_1-T_P=(\nabla T)_P\cdot \boldsymbol r_{PN1} \\ T_2-T_P=(\nabla T)_P\cdot \boldsymbol r_{PN2} \\ T_3-T_P=(\nabla T)_P\cdot \boldsymbol r_{PN3} \\ T_4-T_P=(\nabla T)_P\cdot \boldsymbol r_{PN4} \\ T_5-T_P=(\nabla T)_P\cdot \boldsymbol r_{PN5} \\ T_6-T_P=(\nabla T)_P\cdot \boldsymbol r_{PN6} \\ \end{matrix} \right ] \end{aligned} T1=TP+(T)PdPN1T2=TP+(T)PdPN2T3=TP+(T)PdPN3T4=TP+(T)PdPN4T5=TP+(T)PdPN5T6=TP+(T)PdPN6 T1TP=(T)PrPN1T2TP=(T)PrPN2T3TP=(T)PrPN3T4TP=(T)PrPN4T5TP=(T)PrPN5T6TP=(T)PrPN6
[ d P N 1 , x , d P N 1 , y , d P N 1 , z d P N 2 , x , d P N 2 , y , d P N 2 , z d P N 3 , x , d P N 3 , y , d P N 3 , z d P N 4 , x , d P N 4 , y , d P N 4 , z d P N 5 , x , d P N 5 , y , d P N 5 , z d P N 6 , x , d P N 6 , y , d P N 6 , z ] [ ∂ T ∂ x ∂ T ∂ y ∂ T ∂ z ] = [ T 1 − T P T 2 − T P T 3 − T P T 4 − T P T 5 − T P T 6 − T P ] \begin{aligned} \left [ \begin{matrix} \boldsymbol d_{PN1,x},& \boldsymbol d_{PN1,y},& \boldsymbol d_{PN1,z}\\ \boldsymbol d_{PN2,x},& \boldsymbol d_{PN2,y},& \boldsymbol d_{PN2,z}\\ \boldsymbol d_{PN3,x},& \boldsymbol d_{PN3,y},& \boldsymbol d_{PN3,z}\\ \boldsymbol d_{PN4,x},& \boldsymbol d_{PN4,y},& \boldsymbol d_{PN4,z}\\ \boldsymbol d_{PN5,x},& \boldsymbol d_{PN5,y},& \boldsymbol d_{PN5,z}\\ \boldsymbol d_{PN6,x},& \boldsymbol d_{PN6,y},& \boldsymbol d_{PN6,z}\\ \end{matrix} \right ] \end{aligned} \left [ \begin{matrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y}\\ \frac{\partial T}{\partial z}\\ \end{matrix} \right ] = \begin{aligned} \left [ \begin{matrix} T_1-T_P\\ T_2-T_P\\ T_3-T_P \\ T_4-T_P\\ T_5-T_P\\ T_6-T_P\\ \end{matrix} \right ] \end{aligned} dPN1,x,dPN2,x,dPN3,x,dPN4,x,dPN5,x,dPN6,x,dPN1,y,dPN2,y,dPN3,y,dPN4,y,dPN5,y,dPN6,y,dPN1,zdPN2,zdPN3,zdPN4,zdPN5,zdPN6,z xTyTzT = T1TPT2TPT3TPT4TPT5TPT6TP
[ d P N ] [ ( ∇ T ) P ] = [ T N − T P ] [\boldsymbol d_{PN}][(\nabla T)_P]=[T_N-T_P] [dPN][(T)P]=[TNTP]
A X = B \boldsymbol{AX=B} AX=B
6 × 3 , 3 × 1 , 3 × 1 6\times3, 3\times1, 3\times1 6×3,3×1,3×1
N sided:
N × 3 , 3 × 1 , N × 1 N\times3, 3\times1, N\times1 N×3,3×1,N×1

Least-Square Solution for ( ∇ T ) P (\nabla T)_P (T)P

[ d P N ] [ ( ∇ T ) P ] = [ T N − T P ] [\boldsymbol d_{PN}][(\nabla T)_P]=[T_N-T_P] [dPN][(T)P]=[TNTP]
d P N d P N T ( ∇ T ) P = ( T N − T P ) d P N T \boldsymbol d_{PN}\boldsymbol d_{PN}^T(\nabla T)_P=(T_N-T_P)\boldsymbol d_{PN}^T dPNdPNT(T)P=(TNTP)dPNT

( ∇ T ) P = ( d P N d P N T ) − 1 d P N T ( T N − T P ) (\nabla T)_P=(\boldsymbol d_{PN}\boldsymbol d_{PN}^T)^{-1}\boldsymbol d_{PN}^T(T_N-T_P) (T)P=(dPNdPNT)1dPNT(TNTP)

G = ( d P N d P N T ) G=(\boldsymbol d_{PN}\boldsymbol d_{PN}^T) G=(dPNdPNT)

( ∇ T ) P = G − 1 d P N T ( T N − T P ) (\nabla T)_P=G^{-1}\boldsymbol d_{PN}^T(T_N-T_P) (T)P=G1dPNT(TNTP)

example

在这里插入图片描述

A = [ − 1 , 0 , 0 0 , − 1 , 0 1 , 0 , 0 0 , 1 , 0 ] A T = [ − 1 , 0 , 1 , 0 0 , − 1 , 0 , 1 0 , 0 , 0 , 0 ] A= \begin{aligned} \left [ \begin{matrix} -1,&0,& 0\\ 0,&-1,& 0\\ 1,&0,& 0\\ 0,&1,& 0\\ \end{matrix} \right ] \end{aligned} A^T= \begin{aligned} \left [ \begin{matrix} -1,&0,&1,&0\\ 0,&-1,& 0,&1\\ 0,&0,& 0,&0\\ \end{matrix} \right ] \end{aligned} A= 1,0,1,0,0,1,0,1,0000 AT= 1,0,0,0,1,0,1,0,0,010
G = A A T = [ 2 , 0 , 0 0 , 2 , 0 0 , 0 , 0 ] G − 1 = [ 1 2 , 0 , 0 0 , 1 2 , 0 0 , 0 , 0 ] G=AA^T= \begin{aligned} \left [ \begin{matrix} 2,&0,&0\\ 0,&2,&0\\ 0,&0,& 0\\ \end{matrix} \right ] \end{aligned} G^{-1}= \begin{aligned} \left [ \begin{matrix} \frac{1}{2},&0,&0\\ 0,&\frac{1}{2},&0\\ 0,&0,& 0\\ \end{matrix} \right ] \end{aligned} G=AAT= 2,0,0,0,2,0,000 G1= 21,0,0,0,21,0,000
逆矩阵求解方法可以参考:

( ∇ T ) P = G − 1 d P N T ( T N − T P ) (\nabla T)_P=G^{-1}\boldsymbol d_{PN}^T(T_N-T_P) (T)P=G1dPNT(TNTP)
( ∇ T ) P = [ 1 2 , 0 , 0 0 , 1 2 , 0 0 , 0 , 0 ] [ − 1 , 0 , 1 , 0 0 , − 1 , 0 , 1 0 , 0 , 0 , 0 ] [ 100 − 200 100 − 200 300 − 200 300 − 200 ] = [ ∂ T ∂ x ∂ T ∂ y ∂ T ∂ z ] = [ 100 100 0 ] (\nabla T)_P= \begin{aligned} \left [ \begin{matrix} \frac{1}{2},&0,&0\\ 0,&\frac{1}{2},&0\\ 0,&0,& 0\\ \end{matrix} \right ] \end{aligned} \left [ \begin{matrix} -1,&0,&1,&0\\ 0,&-1,& 0,&1\\ 0,&0,& 0,&0\\ \end{matrix} \right ] \begin{aligned} \left [ \begin{matrix} 100-200\\ 100-200\\ 300-200\\ 300-200\\ \end{matrix} \right ] \end{aligned}= \begin{aligned} \left [ \begin{matrix} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y}\\ \frac{\partial T}{\partial z}\\ \end{matrix} \right ] \end{aligned}= \begin{aligned} \left [ \begin{matrix} 100\\ 100\\ 0\\ \end{matrix} \right ] \end{aligned} (T)P= 21,0,0,0,21,0,000 1,0,0,0,1,0,1,0,0,010 100200100200300200300200 = xTyTzT = 1001000

方法2:

在这里插入图片描述
[ ∑ k = 1 N B ( C ) w k Δ x k Δ x k , ∑ k = 1 N B ( C ) w k Δ x k Δ y k , ∑ k = 1 N B ( C ) w k Δ x k Δ z k ∑ k = 1 N B ( C ) w k Δ y k Δ x k , ∑ k = 1 N B ( C ) w k Δ y k Δ y k , ∑ k = 1 N B ( C ) w k Δ y k Δ z k ∑ k = 1 N B ( C ) w k Δ z k Δ x k , ∑ k = 1 N B ( C ) w k Δ z k Δ y k , ∑ k = 1 N B ( C ) w k Δ z k Δ z k ] [ ( ∂ ϕ ∂ x ) C ( ∂ ϕ ∂ y ) C ( ∂ ϕ ∂ z ) C ] = [ ∑ k = 1 N B ( C ) w k Δ x k Δ ϕ k ∑ k = 1 N B ( C ) w k Δ y k Δ ϕ k ∑ k = 1 N B ( C ) w k Δ z k Δ ϕ k ] \begin{aligned} \left [ \begin{matrix} \sum^{NB(C)}_{k=1}w_k\Delta x_k\Delta x_k,& \sum^{NB(C)}_{k=1}w_k\Delta x_k\Delta y_k,& \sum^{NB(C)}_{k=1}w_k\Delta x_k\Delta z_k\\ \sum^{NB(C)}_{k=1}w_k\Delta y_k\Delta x_k,& \sum^{NB(C)}_{k=1}w_k\Delta y_k\Delta y_k,& \sum^{NB(C)}_{k=1}w_k\Delta y_k\Delta z_k\\ \sum^{NB(C)}_{k=1}w_k\Delta z_k\Delta x_k,& \sum^{NB(C)}_{k=1}w_k\Delta z_k\Delta y_k,& \sum^{NB(C)}_{k=1}w_k\Delta z_k\Delta z_k\\ \end{matrix} \right ] \end{aligned} \left [ \begin{matrix} (\frac{\partial \phi}{\partial x})_C \\ (\frac{\partial \phi}{\partial y})_C\\ (\frac{\partial \phi}{\partial z})_C\\ \end{matrix} \right ] = \begin{aligned} \left [ \begin{matrix} \sum^{NB(C)}_{k=1}w_k\Delta x_k\Delta \phi_k\\ \sum^{NB(C)}_{k=1}w_k\Delta y_k\Delta \phi_k\\ \sum^{NB(C)}_{k=1}w_k\Delta z_k\Delta \phi_k\\ \end{matrix} \right ] \end{aligned} k=1NB(C)wkΔxkΔxk,k=1NB(C)wkΔykΔxk,k=1NB(C)wkΔzkΔxk,k=1NB(C)wkΔxkΔyk,k=1NB(C)wkΔykΔyk,k=1NB(C)wkΔzkΔyk,k=1NB(C)wkΔxkΔzkk=1NB(C)wkΔykΔzkk=1NB(C)wkΔzkΔzk (xϕ)C(yϕ)C(zϕ)C = k=1NB(C)wkΔxkΔϕkk=1NB(C)wkΔykΔϕkk=1NB(C)wkΔzkΔϕk
w k = 1 ∣ r F k − r C ∣ = 1 Δ x F k 2 + Δ y F k 2 + Δ y F k 2 w_k=\frac{1}{\left|\boldsymbol r_{Fk}-\boldsymbol r_C\right|}=\frac{1}{\sqrt{\Delta x^2_{F_k}+\Delta y^2_{F_k}+\Delta y^2_{F_k}}} wk=rFkrC1=ΔxFk2+ΔyFk2+ΔyFk2 1
[ x E − x W , 0 , 0 0 , y N − y S , 0 0 , 0 , z T − z B ] [ ( ∂ ϕ ∂ x ) C ( ∂ ϕ ∂ y ) C ( ∂ ϕ ∂ z ) C ] = [ ϕ E − ϕ W ϕ N − ϕ S ϕ T − ϕ B ] \begin{aligned} \left [ \begin{matrix} x_E-x_W,&0,& 0\\ 0,&y_N-y_S,& 0\\ 0,&0,& z_T-z_B\\ \end{matrix} \right ] \end{aligned} \left [ \begin{matrix} (\frac{\partial \phi}{\partial x})_C \\ (\frac{\partial \phi}{\partial y})_C\\ (\frac{\partial \phi}{\partial z})_C\\ \end{matrix} \right ] = \begin{aligned} \left [ \begin{matrix} \phi_E-\phi_W\\ \phi_N-\phi_S\\ \phi_T-\phi_B\\ \end{matrix} \right ] \end{aligned} xExW,0,0,0,yNyS,0,00zTzB (xϕ)C(yϕ)C(zϕ)C = ϕEϕWϕNϕSϕTϕB
( r − r C ) ⋅ ( ∇ ϕ ) C + O ( r 2 ) = ϕ ( r ) − ϕ ( r C ) (\boldsymbol r-\boldsymbol r_C)\cdot(\nabla \phi)_C+O(\boldsymbol r^2)=\phi(\boldsymbol r)-\phi(\boldsymbol r_C) (rrC)(ϕ)C+O(r2)=ϕ(r)ϕ(rC)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值