# FVM in CFD 学习笔记_第15章_流动计算：不可压缩流动_3_边界条件

FVM in CFD 学习笔记 专栏收录该内容
14 篇文章 36 订阅

Chapter 15 Fluid Flow Computation: Incompressible Flows

# 6 边界条件

□ ‾ b = □ C \overline{\square}_b=\square_C

v b ∗ ‾ = v C ∗ ∇ p b ( n ) ‾ = ∇ p C ( n ) D b v ‾ = D C v v b ∗ ⏟ b o u n d a r y   f a c e = v b ∗ ‾ − D b v ‾ ( ∇ p b ( n ) − ∇ p b ( n ) ‾ ) ⏟ s t a n d a r d   R h i e − C h o w = v C ∗ − D C v ( ∇ p b ( n ) − ∇ p C ( n ) ) ⏟ b o u n d a r y   R h i e − C h o w m ˙ b ∗ = ρ b v b ∗ ⋅ S b = ρ b [ v C ∗ − D C v ( ∇ p b ( n ) − ∇ p C ( n ) ) ] ⋅ S b \begin{aligned} \overline{\bold v_b^*}&=\bold v_C^* \\ \overline{\nabla p_b^{(n)}}&=\nabla p_C^{(n)} \\ \overline{\bold D_b^{\bold v}}&=\bold D_C^{\bold v} \\ \underbrace{\bold v_b^*}_{boundary~face} &= \underbrace{\overline{\bold v_b^*} - \overline{\bold D_b^{\bold v}}\left( \nabla p_b^{(n)}-\overline{\nabla p_b^{(n)}} \right)}_{standard~Rhie-Chow} \\ &= \underbrace{\bold v_C^*-\bold D_C^{\bold v}\left( \nabla p_b^{(n)}-\nabla p_C^{(n)} \right)}_ {boundary~Rhie-Chow} \\ \dot m_b^* &=\rho_b\bold v_b^*\cdot \bold S_b \\ &= \rho_b \left[ \bold v_C^*-\bold D_C^{\bold v}\left( \nabla p_b^{(n)}-\nabla p_C^{(n)} \right) \right] \cdot \bold S_b \end{aligned}

## 6.1 动量方程边界条件

( ρ v ) C − ( ρ v ) C ∘ Δ t V C ⏟ e l e m e n t   d i s c r e t i z a t i o n + ∑ f ∼ n b ( C ) ( m ˙ f v f ) ⏟ f a c e   d i s c r e t i z a t i o n = − ∑ f ∼ n b ( C ) ( p f S f ) ⏟ f a c e   d i s c r e t i z a t i o n + ∑ f ∼ n b ( C ) ( τ f ⋅ S f ) ⏟ f a c e   d i s c r e t i z a t i o n + B ⏟ e l e m e n t d i s c r e t i z a t i o n \underbrace{\frac{(\rho\bold v)_C-(\rho\bold v)_C^\circ}{\Delta t}V_C}_{element~discretization} + \underbrace{\sum_{f\sim nb(C)}\left(\dot m_f \bold v_f\right)}_{face~discretization}= -\underbrace{\sum_{f\sim nb(C)}\left(p_f\bold S_f\right)}_{face~discretization} +\underbrace{\sum_{f\sim nb(C)}\left(\tau_f\cdot\bold S_f\right)}_{face~discretization} +\underbrace{\bold B}_{\footnotesize{\begin{matrix}element\\discretization\end{matrix}}}

∑ f ∼ n b ( C ) ( m ˙ f v f ) ⏟ f a c e   d i s c r e t i z a t i o n = ∑ f ∼ i n t e r i o r   n b ( C ) ( m ˙ f v f ) + m ˙ b v b ⏟ b o u n d a r y   f a c e ∑ f ∼ n b ( C ) ( τ f ⋅ S f ) ⏟ f a c e   d i s c r e t i z a t i o n = ∑ f ∼ i n t e r i o r   n b ( C ) ( τ f ⋅ S f ) + τ b ⋅ S b ⏟ b o u n d a r y   f a c e = ∑ f ∼ i n t e r i o r   n b ( C ) ( τ f ⋅ S f ) + F b ⏟ b o u n d a r y   f a c e ∑ f ∼ n b ( C ) ( p f S f ) ⏟ f a c e   d i s c r e t i z a t i o n = ∑ f ∼ i n t e r i o r   n b ( C ) ( p f S f ) + p b S b ⏟ b o u n d a r y   f a c e \begin{aligned} \underbrace{\sum_{f\sim nb(C)}\left(\dot m_f \bold v_f\right)}_{face~discretization}&= \sum_{f\sim interior~nb(C)}\left(\dot m_f \bold v_f\right)+\underbrace{\dot m_b \bold v_b}_{boundary~face} \\ \underbrace{\sum_{f\sim nb(C)}\left(\tau_f\cdot\bold S_f\right)}_{face~discretization}&= \sum_{f\sim interior~nb(C)}\left(\tau_f\cdot\bold S_f\right)+\underbrace{\tau_b\cdot\bold S_b}_{boundary~face} \\ &= \sum_{f\sim interior~nb(C)}\left(\tau_f\cdot\bold S_f\right)+\underbrace{\bold F_b}_{boundary~face} \\ \underbrace{\sum_{f\sim nb(C)}\left(p_f\bold S_f\right)}_{face~discretization} &= \sum_{f\sim interior~nb(C)}\left(p_f\bold S_f\right)+\underbrace{p_b\bold S_b}_{boundary~face} \end{aligned}

### 6.1.1 壁面边界条件

F b = F ⊥ + F ∥ \bold F_b = \bold F_{\perp}+\bold F_{\parallel}

F b = F ∥ = τ w a l l S b \bold F_b=\bold F_{\parallel}=\tau_{wall}S_b

τ w a l l = − μ ∂ v ∥ ∂ d ⊥ \tau_{wall}=-\mu\frac{\partial \bold v_{\parallel}}{\partial d_{\perp}}

n = S b S b = n x i + n y j + n z k d ⊥ = d C b ⋅ n = d C b ⋅ S b S b \begin{aligned} \bold n &= \frac{\bold S_b}{S_b}=n_x\bold i+ n_y \bold j + n_z \bold k \\ d_{\perp} &= \bold d_{Cb}\cdot n=\frac{\bold d_{Cb}\cdot\bold S_b}{S_b} \end{aligned}

v ∥ = v − ( v ⋅ n ) n = { u − ( u n x + v n y + w n z ) n x v − ( u n x + v n y + w n z ) n y w − ( u n x + v n y + w n z ) n z } \bold v_{\parallel}=\bold v-(\bold v\cdot \bold n)\bold n=\left\{ \begin{matrix} u-(un_x+vn_y+wn_z)n_x \\ v-(un_x+vn_y+wn_z)n_y \\ w-(un_x+vn_y+wn_z)n_z \end{matrix} \right\}

τ w a l l ≈ − μ b ( v C − v b ) ∥ d ⊥ = − μ b ( v C − v b ) − [ ( v C − v b ) ⋅ n ] n d ⊥ = − μ b d ⊥ { ( u C − u b ) − [ ( u C − u b ) n x + ( v C − v b ) n y + ( w C − w b ) n z ] n x ( v C − v b ) − [ ( u C − u b ) n x + ( v C − v b ) n y + ( w C − w b ) n z ] n y ( w C − w b ) − [ ( u C − u b ) n x + ( v C − v b ) n y + ( w C − w b ) n z ] n z } \begin{aligned} \tau_{wall} &\approx -\mu_b\frac{(\bold v_C-\bold v_b)_{\parallel}}{d_{\perp}}= -\mu_b\frac{(\bold v_C-\bold v_b)-[(\bold v_C-\bold v_b)\cdot\bold n]\bold n}{d_{\perp}} \\ &=-\frac{\mu_b}{d_{\perp}}\left\{ \begin{matrix} (u_C-u_b)-[(u_C-u_b)n_x+(v_C-v_b)n_y+(w_C-w_b)n_z]n_x \\ (v_C-v_b)-[(u_C-u_b)n_x+(v_C-v_b)n_y+(w_C-w_b)n_z]n_y \\ (w_C-w_b)-[(u_C-u_b)n_x+(v_C-v_b)n_y+(w_C-w_b)n_z]n_z \end{matrix} \right\} \end{aligned}

F b = = − μ b S b d ⊥ { ( u C − u b ) − [ ( u C − u b ) n x + ( v C − v b ) n y + ( w C − w b ) n z ] n x ( v C − v b ) − [ ( u C − u b ) n x + ( v C − v b ) n y + ( w C − w b ) n z ] n y ( w C − w b ) − [ ( u C − u b ) n x + ( v C − v b ) n y + ( w C − w b ) n z ] n z } \bold F_b==-\frac{\mu_bS_b}{d_{\perp}}\left\{ \begin{matrix} (u_C-u_b)-[(u_C-u_b)n_x+(v_C-v_b)n_y+(w_C-w_b)n_z]n_x \\ (v_C-v_b)-[(u_C-u_b)n_x+(v_C-v_b)n_y+(w_C-w_b)n_z]n_y \\ (w_C-w_b)-[(u_C-u_b)n_x+(v_C-v_b)n_y+(w_C-w_b)n_z]n_z \end{matrix} \right\}

u u 分量方程
a C u ← a C u ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + μ b S b d ⊥ ( 1 − n x 2 ) ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n 0 ← a F = b u b C u ← b C u ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + μ b S b d ⊥ [ u b ( 1 − n x 2 ) + ( v C − v b ) n y n x + ( w C − w b ) n z n x ] − p b S b x ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n \begin{aligned} a_C^u &\leftarrow \underbrace{a_C^u}_{interior~faces~contribution} + \underbrace{\frac{\mu_bS_b}{d_{\perp}}(1-n_x^2)}_{boundary~face~contribution} \\ 0 &\leftarrow a_{F=b}^{u} \\ b_C^u &\leftarrow \underbrace{b_C^u}_{interior~faces~contribution} + \underbrace{\frac{\mu_bS_b}{d_{\perp}}[u_b(1-n_x^2)+(v_C-v_b)n_yn_x+(w_C-w_b)n_zn_x]-p_bS_b^x}_{boundary~face~contribution} \end{aligned}
v v 分量方程
a C v ← a C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + μ b S b d ⊥ ( 1 − n y 2 ) ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n 0 ← a F = b v b C v ← b C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + μ b S b d ⊥ [ ( u C − u b ) n x n y + v b ( 1 − n y 2 ) + ( w C − w b ) n z n y ] − p b S b y ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n \begin{aligned} a_C^v &\leftarrow \underbrace{a_C^v}_{interior~faces~contribution} + \underbrace{\frac{\mu_bS_b}{d_{\perp}}(1-n_y^2)}_{boundary~face~contribution} \\ 0 &\leftarrow a_{F=b}^{v} \\ b_C^v &\leftarrow \underbrace{b_C^v}_{interior~faces~contribution} + \underbrace{\frac{\mu_bS_b}{d_{\perp}}[(u_C-u_b)n_xn_y+v_b(1-n_y^2)+(w_C-w_b)n_zn_y]-p_bS_b^y}_{boundary~face~contribution} \end{aligned}
w w 分量方程
a C w ← a C w ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + μ b S b d ⊥ ( 1 − n z 2 ) ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n 0 ← a F = b w b C w ← b C w ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + μ b S b d ⊥ [ ( u C − u b ) n x n z + ( v C − v b ) n y n z + w b ( 1 − n z 2 ) ] − p b S b z ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n \begin{aligned} a_C^w &\leftarrow \underbrace{a_C^w}_{interior~faces~contribution} + \underbrace{\frac{\mu_bS_b}{d_{\perp}}(1-n_z^2)}_{boundary~face~contribution} \\ 0 &\leftarrow a_{F=b}^{w} \\ b_C^w &\leftarrow \underbrace{b_C^w}_{interior~faces~contribution} + \underbrace{\frac{\mu_bS_b}{d_{\perp}}[(u_C-u_b)n_xn_z+(v_C-v_b)n_yn_z+w_b(1-n_z^2)]-p_bS_b^z}_{boundary~face~contribution} \end{aligned}

p b = p C + ∇ p C ( n ) ⋅ d C b p_b=p_C+\nabla p_C^{(n)}\cdot \bold d_{Cb}

m ˙ b ∗ = ρ b v b ∗ ⋅ S b − ρ b D C v ( ∇ p b ( n ) − ∇ p C ( n ) ) ⋅ S b \dot m_b^* = \rho_b\bold v_b^*\cdot \bold S_b - \rho_b\bold D_C^{\bold v}(\nabla p_b^{(n)}-\nabla p_C^{(n)})\cdot \bold S_b
（不解，上式的 v b ∗ \bold v_b^* 为何不是 v b ∗ ‾ \overline{\bold v_b^*} v C ∗ \bold v_C^* ？）

0 = 0 − ρ b D C v ( ∇ p b ( n ) − ∇ p C ( n ) ) ⋅ S b 0=0-\rho_b\bold D_C^{\bold v}(\nabla p_b^{(n)}-\nabla p_C^{(n)})\cdot \bold S_b

D C v ∇ p b ( n ) ⋅ S b = ∇ p b ( n ) ⋅ S b ′ = ∇ p C ( n ) ⋅ S b ′ \begin{aligned} \bold D_C^{\bold v}\nabla p_b^{(n)}\cdot \bold S_b=\nabla p_b^{(n)}\cdot \bold S'_b=\nabla p_C^{(n)}\cdot \bold S'_b \end{aligned}
S b ′ \bold S'_b 转化为两矢量和加和形式 S b ′ = E b + T b \bold S'_b=\bold E_b+\bold T_b ，上式变为
∇ p b ( n ) ⋅ ( E b + T b ) = ∇ p C ( n ) ⋅ S b ′ \nabla p_b^{(n)}\cdot (\bold E_b+\bold T_b)=\nabla p_C^{(n)}\cdot \bold S'_b

D C ( p b − p C ) = ( ∇ p C ( n ) ⋅ S b ′ − ∇ p b ( n ) ⋅ T b ) \mathcal D_C(p_b-p_C)=(\nabla p_C^{(n)}\cdot \bold S'_b-\nabla p_b^{(n)}\cdot \bold T_b)

p b = p C + ∇ p C ( n ) ⋅ S b ′ − ∇ p b ( n ) ⋅ T b D C p_b=p_C+\frac{\nabla p_C^{(n)}\cdot \bold S'_b-\nabla p_b^{(n)}\cdot \bold T_b}{\mathcal D_C}

a C v ← a C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n 0 ← a F = b v b C v ← b C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n − p b S b ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n \begin{aligned} a_C^{\bold v} &\leftarrow \underbrace{a_C^{\bold v}}_{interior~faces~contribution}\\ 0 &\leftarrow a_{F=b}^{\bold v} \\ \bold b_C^{\bold v} &\leftarrow \underbrace{\bold b_C^{\bold v}}_{interior~faces~contribution} - \underbrace{p_b\bold S_b}_{boundary~face~contribution} \end{aligned}

### 6.1.2 进口边界条件

p b = p C + ∇ p C ( n ) ⋅ d C b p_b=p_C+\nabla p_C^{(n)}\cdot \bold d_{Cb}

a C v ← a C v b C v ← b C v − m ˙ b v b + F b − p b S b 0 ← a F = b v (15.136) \begin{aligned} a_C^{\bold v} &\leftarrow a_C^{\bold v} \\ \bold b_C^{\bold v} &\leftarrow \bold b_C^{\bold v}- \dot m_b \bold v_b+\bold F_b-p_b \bold S_b \tag{15.136}\\ 0 &\leftarrow a_{F=b}^{\bold v} \end{aligned}
（书上的式子感觉不是很对，所以我按照自己的理解给改了下，可能也未必对……书上的式子是下面酱紫滴，有点莫名其妙）
a C v ← a C v b C v ← b C v − a F = b v v b 0 ← a F = b v \begin{aligned} a_C^{\bold v} &\leftarrow a_C^{\bold v} \\ \bold b_C^{\bold v} &\leftarrow \bold b_C^{\bold v}-a_{F=b}^{\bold v}\bold v_b\\ 0 &\leftarrow a_{F=b}^{\bold v} \end{aligned}

m ˙ b ∗ ∗ = ρ b v b ∗ ∗ ⋅ S b = ρ b ∣ ∣ v b ∗ ∗ ∣ ∣ e v ⋅ S b ⇒ ∣ ∣ v b ∗ ∗ ∣ ∣ = m ˙ b ∗ ∗ ρ b ( e v ⋅ S b ) ⇒ v b ∗ ∗ = ∣ ∣ v b ∗ ∗ ∣ ∣ e v \begin{aligned} & \dot m_b^{**}=\rho_b \bold v_b^{**} \cdot \bold S_b=\rho_b ||\bold v_b^{**}|| \bold e_{\bold v}\cdot \bold S_b \\ \Rightarrow & ||\bold v_b^{**}||=\frac{\dot m_b^{**}}{\rho_b ( \bold e_{\bold v}\cdot \bold S_b)} \\ \Rightarrow & \bold v_b^{**}=||\bold v_b^{**}|| \bold e_{\bold v} \end{aligned}

p o = p ⏟ s t a t i c   p r e s s u r e + 1 2 ρ v ⋅ v ⏟ d y n a m i c   p r e s s u r e p_o=\underbrace{p}_{static~pressure}+\underbrace{\frac{1}{2}\rho \bold v \cdot \bold v}_{dynamic~pressure}

### 6.1.3 出口边界条件

a C v ← a C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + m ˙ b ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n 0 ← a F = b v b C v ← b C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n − p b S b ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n \begin{aligned} a_C^{\bold v} &\leftarrow \underbrace{a_C^{\bold v}}_{interior~faces~contribution}+ \underbrace{\dot m_b}_{boundary~face~contribution} \\ 0 &\leftarrow a_{F=b}^{\bold v} \\ \bold b_C^{\bold v} &\leftarrow \underbrace{\bold b_C^{\bold v}}_{interior~faces~contribution}- \underbrace{p_b \bold S_b}_{boundary~face~contribution} \end{aligned}
（上式相当于让 v b = v C \bold v_b = \bold v_C ，即， m ˙ b v b = m ˙ b v C \dot m_b \bold v_b=\dot m_b \bold v_C ，所以系数 a C v a_C^{\bold v} 中多了一项 m ˙ b \dot m_b

∇ v b = ∇ v C − ( ∇ v C ⋅ e b ) e b \nabla \bold v_b=\nabla \bold v_C-(\nabla \bold v_C \cdot \bold e_b) \bold e_b

v b = v C + ∇ v b ⋅ d C b \bold v_b = \bold v_C + \nabla \bold v_b \cdot \bold d_{Cb}

a C v ← a C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + m ˙ b ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n 0 ← a F = b v b C v ← b C v ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n − m ˙ b ( ∇ v b ⋅ d C b ) − p b S b ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n (15.142) \begin{aligned} a_C^{\bold v} &\leftarrow \underbrace{a_C^{\bold v}}_{interior~faces~contribution}+ \underbrace{\dot m_b}_{boundary~face~contribution} \\ 0 &\leftarrow a_{F=b}^{\bold v} \tag{15.142}\\ \bold b_C^{\bold v} &\leftarrow \underbrace{\bold b_C^{\bold v}}_{interior~faces~contribution} \underbrace{-\dot m_b(\nabla \bold v_b \cdot \bold d_{Cb})-p_b \bold S_b}_{boundary~face~contribution} \end{aligned}
（关于上式的说明，边界速度所带来的质量通量为 m ˙ b v b = m ˙ b v C + m ˙ b ( ∇ v b ⋅ d C b ) \dot m_b \bold v_b=\dot m_b \bold v_C+\dot m_b(\nabla \bold v_b \cdot \bold d_{Cb}) ，前面的进入对角系数 a C v a_C^{\bold v} 中，后面的放入源项 b C v \bold b_C^{\bold v} 中。实际效果相当于既让出口速度的法向梯度为零，还允许出口速度含切向分量。还有一点要说明的，由于出口，所以没有剪切应力，所以 F b \bold F_b 为零，系数中也就不再出现它了。）

v b = ∣ v b ∣ ( e v ) C \bold v_b=|\bold v_b|(\bold e_{\bold v})_C

m ˙ b = ρ b v b ⋅ S b = ρ b ∣ v b ∣ ( e v ) C ⋅ S b ⇒ ∣ v b ∣ = m ˙ b ρ b ( e v ) C ⋅ S b \begin{aligned} &\dot m_b=\rho_b\bold v_b\cdot \bold S_b=\rho_b|\bold v_b|(\bold e_{\bold v})_C\cdot \bold S_b \\ \Rightarrow & |\bold v_b|=\frac{\dot m_b}{\rho_b(\bold e_{\bold v})_C\cdot \bold S_b} \end{aligned}

∇ v b = ∇ v C − ( ∇ v C ⋅ e b ) e b v b = v C + ∇ v b ⋅ d C b \begin{aligned} \nabla \bold v_b&=\nabla \bold v_C-(\nabla \bold v_C \cdot \bold e_b) \bold e_b \\ \bold v_b &= \bold v_C + \nabla \bold v_b \cdot \bold d_{Cb} \end{aligned}

p b = p C + ∇ p C ⋅ d C b p_b=p_C+\nabla p_C\cdot \bold d_{Cb}

### 6.1.4 对称边界条件

n = S b S b = n x i + n y j + n z k d ⊥ = d C b ⋅ n = d C b ⋅ S b S b \begin{aligned} \bold n &= \frac{\bold S_b}{S_b}=n_x\bold i+ n_y \bold j + n_z \bold k \\ d_{\perp} &= \bold d_{Cb}\cdot n=\frac{\bold d_{Cb}\cdot\bold S_b}{S_b} \end{aligned}

v ⊥ = 0 ∂ v ∥ ∂ n = 0 \begin{aligned} \bold v_{\perp} &= \bold 0 \\ \frac{\partial \bold v_{\parallel}}{\partial \bold n} &= \bold 0 \end{aligned}

v ⊥ = ( v ⋅ n ) n = { ( u C n x + v C n y + w C n z ) n x ( u C n x + v C n y + w C n z ) n y ( u C n x + v C n y + w C n z ) n z } \bold v_{\perp}=(\bold v\cdot \bold n)\bold n=\left\{ \begin{matrix} (u_Cn_x+v_Cn_y+w_Cn_z)n_x \\ (u_Cn_x+v_Cn_y+w_Cn_z)n_y \\ (u_Cn_x+v_Cn_y+w_Cn_z)n_z \end{matrix} \right\}

v ∥ = v − ( v ⋅ n ) n = { u C − ( u C n x + v C n y + w C n z ) n x v C − ( u C n x + v C n y + w C n z ) n y w C − ( u C n x + v C n y + w C n z ) n z } \bold v_{\parallel}=\bold v-(\bold v\cdot \bold n)\bold n=\left\{ \begin{matrix} u_C-(u_Cn_x+v_Cn_y+w_Cn_z)n_x \\ v_C-(u_Cn_x+v_Cn_y+w_Cn_z)n_y \\ w_C-(u_Cn_x+v_Cn_y+w_Cn_z)n_z \end{matrix} \right\}

F b = σ ⊥ S b \bold F_b=\sigma_{\perp}S_b

σ ⊥ ≈ − 2 μ b v ⊥ d ⊥ = − 2 μ b d ⊥ { ( u C n x + v C n y + w C n z ) n x ( u C n x + v C n y + w C n z ) n y ( u C n x + v C n y + w C n z ) n z } \sigma_{\perp}\approx-2\mu_b\frac{\bold v_{\perp}}{d_{\perp}}=-2\frac{\mu_b}{d_{\perp}} \left\{ \begin{matrix} (u_Cn_x+v_Cn_y+w_Cn_z)n_x \\ (u_Cn_x+v_Cn_y+w_Cn_z)n_y \\ (u_Cn_x+v_Cn_y+w_Cn_z)n_z \end{matrix} \right\}

F b = F n = − 2 μ b S b d ⊥ { ( u C n x + v C n y + w C n z ) n x ( u C n x + v C n y + w C n z ) n y ( u C n x + v C n y + w C n z ) n z } \bold F_b=\bold F_n=-2\frac{\mu_bS_b}{d_{\perp}} \left\{ \begin{matrix} (u_Cn_x+v_Cn_y+w_Cn_z)n_x \\ (u_Cn_x+v_Cn_y+w_Cn_z)n_y \\ (u_Cn_x+v_Cn_y+w_Cn_z)n_z \end{matrix} \right\}

∇ p b ⋅ n = 0 \nabla p_b\cdot \bold n=0

∇ p b = ∇ p C − ( ∇ p C ⋅ n ) n \nabla p_b = \nabla p_C - (\nabla p_C \cdot \bold n)\bold n

p b = p C + ∇ p b ⋅ d C b p_b=p_C+\nabla p_b\cdot \bold d_{Cb}

u u 分量方程
a C u ← a C u ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n + 2 μ b S b d ⊥ n x 2 ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n 0 ← a F = b u b C u ← b C u ⏟ i n t e r i o r   f a c e s   c o n t r i b u t i o n − 2 μ b S b d ⊥ ( v C n y + w C n z ) n x − p b S b x ⏟ b o u n d a r y   f a c e   c o n t r i b u t i o n \begin{aligned} a_C^u &\leftarrow \underbrace{a_C^u}_{interior~faces~contribution} + \underbrace{\frac{2\mu_bS_b}{d_{\perp}}n_x^2}_{boundary~face~contribution} \\ 0 &\leftarrow a_{F=b}^{u} \\ b_C^u &\leftarrow \underbrace{b_C^u}_{interior~faces~contribution} - \underbrace{\frac{2\mu_bS_b}{d_{\perp}}(v_Cn_y+w_Cn_z)n_x-p_bS_b^x}_{boundary~face~contribution} \end{aligned}