本文链接:CSDN
目录
1.应用于文本分类或序列到序列(seq2seq)任务,基于医疗问答系统的聊天机器人
2.使用TensorFlow和Keras构建一个简单的聊天机器人模型
2.1导入了构建模型所需的Keras模块,以及用于处理数组和绘图所需的numpy和matplotlib库
2.3设置模型的参数,包括词汇表大小、嵌入维度、LSTM单元数和批处理大小
3.1建一个简单的聊天机器人对话系统,支持用户输入问题并显示机器人回答的功能,该应用程序使用 TensorFlow 和 Keras 库加载了一个训练好的机器学习模型,用于预测机器人回答。
导入所需的库和模块,包括 PyQt5、TensorFlow、Keras、numpy 和 pickle。
加载训练好的机器学习模型(chatbot\_model.h5)和 Tokenizer(tokenizer.pkl)。
定义一个名为 predict_response 的函数,用于预测机器人回答。该函数接收用户输入文本,并使用 Tokenizer 将文本转换为序列,然后使用机器学习模型进行预测,最终返回预测结果。
定义一个名为 ChatBotApp 的类,继承自 QMainWindow。该类实现了聊天机器人对话系统的用户界面和功能。
创建一个 QApplication 实例,并显示应用程序窗口。
医疗问答机器人可以使用不同的技术和方法来实现,包括但不限于:
- 自然语言处理(NLP):NLP 技术可以用于理解用户的自然语言输入,并将其转换为可以被机器理解的形式。这可以包括词汇分析、实体识别、语法分析和语义分析等步骤。
- 知识图谱:知识图谱可以用于存储和组织有关医疗保健领域的知识和信息。这可以包括疾病、症状、治疗方法、药物和医疗设备等信息。
- 机器学习:机器学习技术可以用于训练模型,以预测用户问题的回答。这可以包括监督学习、无监督学习和强化学习等方法。
- 数据处理和分析:数据处理和分析技术可以用于收集、处理和分析有关用户问题和回答的数据。这可以包括统计分析、数据可视化和数据挖掘等技术。
背景:
医疗问答机器人,也称为医疗智能助手或健康咨询系统,它的背景和发展源自几个关键因素:
-
技术进步:随着人工智能(AI)、自然语言处理(NLP)和机器学习的发展,技术为创建能够理解医学知识并提供专业建议的机器人提供了可能。
-
医疗信息爆炸:互联网上充斥着大量医疗信息,但用户往往难以分辨真伪和适用性,医疗问答机器人旨在提供准确、及时的信息援助。
-
医疗资源需求:特别是在人口老龄化和慢性病日益增多的背景下,医生和医疗资源的供应与需求不平衡,机器人能辅助分担部分咨询任务。
-
远程医疗趋势:远程医疗和移动健康应用的普及促使医疗信息获取更加便捷,医疗问答机器人成为远程健康服务的一部分。
前提摘要:
医疗问答机器人基于大数据和算法,通过深度学习模型对医学文献、临床指南等进行训练,能理解用户提出的健康问题,并通过知识图谱和自然语言生成技术提供专业的解答和建议。它通常会结合用户输入的问题、病史和其他相关信息,以确保提供的答案尽可能个性化。
创作灵感:
- 医疗专家的知识体系和经验:开发者从医生的专业知识出发,构建机器人的知识库。
- 用户体验设计:关注如何使机器人交互更人性化,便于患者理解和使用。
- 隐私保护和合规性:确保机器人在提供信息的同时,严格遵守医疗数据隐私和法规要求。
接下来看一下代码的展示:
一.代码解读:
1.应用于文本分类或序列到序列(seq2seq)任务,基于医疗问答系统的聊天机器人
import pandas as pd
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np
import matplotlib.pyplot as plt
import pickle
# 读取对话数据
data = pd.read_csv('data.csv', encoding='utf-8')
data.info()
# 拆分数据为输入和输出部分
input_texts = data['title'].tolist()
target_texts = data['answer'].tolist()
# 初始化 Tokenizer
tokenizer = Tokenizer(num_words=10000)
tokenizer.fit_on_texts(input_texts + target_texts)
# 保存 Tokenizer
with open('tokenizer.pkl', 'wb') as handle:
pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
# 文本转换为序列
input_sequences = tokenizer.texts_to_sequences(input_texts)
target_sequences = tokenizer.texts_to_sequences(target_texts)
# 序列填充
max_sequence_length = 50 # 根据数据长度设定
padded_input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length)
padded_target_sequences = pad_sequences(target_sequences, maxlen=max_sequence_length)
这段代码目的主要是对对话数据进行预处理,包括数据读取、分词、序列化Tokenzier以及序列填充,以便后续训练深度学习模型,运行一下就是:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 799 entries, 0 to 798
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 title 799 non-null object
1 answer 799 non-null object
dtypes: object(2)
memory usage: 12.6+ KB
2.使用TensorFlow和Keras构建一个简单的聊天机器人模型
2.1导入了构建模型所需的Keras模块,以及用于处理数组和绘图所需的numpy和matplotlib库
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, LSTM, Dense, Embedding
import numpy as np
import matplotlib.pyplot as plt
2.2.定义了一个模型构建器,它接受词汇大小、嵌入维度、LSTM单元数和批处理大小作为参数。模型包含一个嵌入层、一个LSTM层和一个密集层。LSTM层返回序列,以便每个时间步都有一个输出,密集层使用softmax激活函数来预测词汇表中的每个单词的概率。
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
input = Input(shape=(None,))
x = Embedding(vocab_size, embedding_dim)(input)
x = LSTM(rnn_units, return_sequences=True)(x)
output = Dense(vocab_size, activation='softmax')(x)
model = Model(inputs=input, outputs=output)
return model
2.3设置模型的参数,包括词汇表大小、嵌入维度、LSTM单元数和批处理大小
vocab_size = 10000
embedding_dim = 256
rnn_units = 1024
batch_size = 10
2.4建模型,并打印模型的摘要
model = build_model(vocab_size, embedding_dim, rnn_units, batch_size)
model.summary()