【Pytorch Lightning】Trainer API使用(二)

本文是Pytorch Lightning Trainer API系列的第二部分,详细介绍了benchmark、deterministic、callbacks等关键参数的用途和影响。内容涵盖训练过程中的可重复性、性能优化、回调机制以及检查点管理和日志记录。同时,提到了如何控制训练、验证和测试数据的批次数量,以及如何启用和禁用梯度剪裁。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Pytorch Lightning】Trainer API使用(一)

benchmark

如果 true 启用 cudnn.benchmark。如果您的输入大小不变,此标志可能会提高系统的速度。但是,如果确实如此,那么它可能会使您的系统变慢。
加速来自允许 cudnn 自动调谐器为硬件找到最佳算法

# default used by the Trainer
trainer = Trainer(benchmark=False)

deterministic

如果 true 启用 cudnn.deterministic。可能会使您的系统变慢,但确保可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智绘山河

你的鼓励可能解决你下一个问题

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值