斯特灵数 stiriling

5 篇文章 0 订阅

第一类stiriling数:

先给出定义

s(n,k): n个元素的项目分作{\displaystyle k}k个环排列的方法数目(此时我们就可以忽略排列的开始元素

举个例子:s(4,2) = 11


s(n,0) = 0,s(1,1) = 1

递推公式为 s(n,k) = (n-1)*s(n-1,k)+s(n-1,k-1) 

解释:

当我们考虑到第n个物品的时候:

1.将第n个物品单独放置 s(n-1,k-1)

2.将第n个物品放置到前面已经放好的物品中,假如放置在第i个物品前,那么即为 (n-1)*s(n-1,k)

举例:hdu 4372

n栋房子,高度为1~n

求从左看可以看到的房子数为x,从右看房子数为y的分配房子高度的方法数

数据范围1-2000

一眼n^3的不可做

然后就没有然后了,一百度斯特灵数,然后学一发,发现好机智啊

除去房子高度为n的房子,放在中间

然后左边x-1,右边y-1

我们对每个可以看到的房子 到 不包括下一个可以看到的房子的 区间看作一个集合

对剩下的n-1个房子分为x-1+y-1个集合 (我们取x-1个集合给前面即为组合数c(x-1+y-1,x-1),剩下的给后面

对于左边,根据每个集合的最大值从左到右排列,这个序列是固定的

每个集合,我们的开始元素一定是这个集合里面最大的数

现在是不是发现和这个公式可以套上了,因为第一类stiriling公式每个集合的排列可以忽略开始的元素

那么就是我们现在要求的这个

代码如下

/*  ^^ ====== ^^ 
ID: meixiuxiu
PROG: test
LANG: C++11
*/
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <climits>
#include <string>
#include <vector>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <sstream>
#include <cctype>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int ,int> pii;
#define MEM(a,b) memset(a,b,sizeof a)
#define CLR(a) memset(a,0,sizeof a);
#define pi acos(-1.0)
#define maxn 2005
#define maxv 100005
const int inf = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
ll c[maxn][maxn];
ll stirling[maxn][maxn];
int main()
{
#ifdef LOCAL
	freopen("in.txt", "r", stdin);
//	freopen("out.txt","w",stdout);
#endif
    c[0][0] = 1;
    for(int i=1;i<maxn;i++){
        c[i][0] = 1;
        for(int j=1;j<=i;j++){
            c[i][j] = (c[i-1][j]+c[i-1][j-1])%MOD;
        }
    }
    for(int i=1;i<maxn;i++){
        stirling[i][0] = 0;
        stirling[i][i] = 1;
        for(int j=1;j<i;j++){
            stirling[i][j] += (1ll*(i-1)*stirling[i-1][j]%MOD + stirling[i-1][j-1])%MOD;
            stirling[i][j] %= MOD;
        }
    }
    int t;cin >> t;
    while(t--){
        int n,b,f;cin >> n >> b >> f;
        if(b+f-2>n){
            cout << 0 << '\n';
            continue;
        }
        printf("%lld\n",stirling[n-1][b-1+f-1]*c[b+f-2][f-1]%MOD);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值