第一类stiriling数:
先给出定义
s(n,k): 个元素的项目分作个环排列的方法数目(此时我们就可以忽略排列的开始元素
举个例子:s(4,2) = 11
s(n,0) = 0,s(1,1) = 1
递推公式为 s(n,k) = (n-1)*s(n-1,k)+s(n-1,k-1)
解释:
当我们考虑到第n个物品的时候:
1.将第n个物品单独放置 s(n-1,k-1)
2.将第n个物品放置到前面已经放好的物品中,假如放置在第i个物品前,那么即为 (n-1)*s(n-1,k)
举例:hdu 4372
n栋房子,高度为1~n
求从左看可以看到的房子数为x,从右看房子数为y的分配房子高度的方法数
数据范围1-2000
一眼n^3的不可做
然后就没有然后了,一百度斯特灵数,然后学一发,发现好机智啊
除去房子高度为n的房子,放在中间
然后左边x-1,右边y-1
我们对每个可以看到的房子 到 不包括下一个可以看到的房子的 区间看作一个集合
对剩下的n-1个房子分为x-1+y-1个集合 (我们取x-1个集合给前面即为组合数c(x-1+y-1,x-1),剩下的给后面
对于左边,根据每个集合的最大值从左到右排列,这个序列是固定的
每个集合,我们的开始元素一定是这个集合里面最大的数
现在是不是发现和这个公式可以套上了,因为第一类stiriling公式每个集合的排列可以忽略开始的元素
那么就是我们现在要求的这个
代码如下
/* ^^ ====== ^^
ID: meixiuxiu
PROG: test
LANG: C++11
*/
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <climits>
#include <string>
#include <vector>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <sstream>
#include <cctype>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int ,int> pii;
#define MEM(a,b) memset(a,b,sizeof a)
#define CLR(a) memset(a,0,sizeof a);
#define pi acos(-1.0)
#define maxn 2005
#define maxv 100005
const int inf = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
ll c[maxn][maxn];
ll stirling[maxn][maxn];
int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("out.txt","w",stdout);
#endif
c[0][0] = 1;
for(int i=1;i<maxn;i++){
c[i][0] = 1;
for(int j=1;j<=i;j++){
c[i][j] = (c[i-1][j]+c[i-1][j-1])%MOD;
}
}
for(int i=1;i<maxn;i++){
stirling[i][0] = 0;
stirling[i][i] = 1;
for(int j=1;j<i;j++){
stirling[i][j] += (1ll*(i-1)*stirling[i-1][j]%MOD + stirling[i-1][j-1])%MOD;
stirling[i][j] %= MOD;
}
}
int t;cin >> t;
while(t--){
int n,b,f;cin >> n >> b >> f;
if(b+f-2>n){
cout << 0 << '\n';
continue;
}
printf("%lld\n",stirling[n-1][b-1+f-1]*c[b+f-2][f-1]%MOD);
}
return 0;
}