HDU 6143 (容斥)

题意:  每个物品有姓和名, 长度均为n,   给定, n, m,   m表示可用字母有m种

要求:   姓和名不能存在相同的字母(如姓:AB, 名不能出现A、B这两个字母)

问: 能构造出几个姓名(每个姓名不能完全相同) ?   方案数 % (1e9+7) 

/*姓+名
枚举姓使用的字母个数k,=> 名使用的字母个数为m-k 
则 方案数f(k) = C(m, k)*(k^n - SUM(C(k, j)*f(j)) * (m-k)^n
容斥处理重复 :  
k^n - SUM( C(k, j)*f(j) )
*/
#include<bits/stdc++.h>
#define rep(i, a, b) for(int i=(a); i<(b); ++i)
#define ll long long 
using namespace std;
const int MOD = 1e9+7;
const int maxn = 2007;
ll C[maxn][maxn]; //组合数 

// 当且仅当使用了 k 个字母时候
// 去除与1~k-1重复的情况后 
// 产生的方案数f(k) (first name) 
ll f[maxn]; 
ll qpow(ll a, ll b){ //快速幂 
	ll ans=1;
	while(b){
		if(b&1) ans = (ans*a)%MOD;
		b>>=1;
		a = a*a%MOD;
	}
	return ans;
}
void init(){
	rep(i, 0, maxn){ //组合数 
		C[i][0] =1;
		rep(j, 1, i+1){
			C[i][j] = (C[i-1][j-1]+C[i-1][j])%MOD;
		}
	}
	return ;
}
int main(){
	int t;
	scanf("%d", &t);
	init();
	f[1]=1;
	while(t--){
		ll n, m ;
		scanf("%lld %lld", &n, &m);
		ll ans=0;
		rep(k,1, m){
			ll tmp = qpow(k, n);
			rep(j, 1, k){
				tmp = (tmp - C[k][j]*f[j]%MOD + MOD)%MOD;
			}
			f[k] = tmp;
			tmp = tmp*C[m][k]%MOD*qpow(m-k, n)%MOD;
			ans+=tmp;
			ans%=MOD;
		} 
		cout << ans <<endl;
	}		
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值