题意: 每个物品有姓和名, 长度均为n, 给定, n, m, m表示可用字母有m种
要求: 姓和名不能存在相同的字母(如姓:AB, 名不能出现A、B这两个字母)
问: 能构造出几个姓名(每个姓名不能完全相同) ? 方案数 % (1e9+7)
/*姓+名
枚举姓使用的字母个数k,=> 名使用的字母个数为m-k
则 方案数f(k) = C(m, k)*(k^n - SUM(C(k, j)*f(j)) * (m-k)^n
容斥处理重复 :
k^n - SUM( C(k, j)*f(j) )
*/
#include<bits/stdc++.h>
#define rep(i, a, b) for(int i=(a); i<(b); ++i)
#define ll long long
using namespace std;
const int MOD = 1e9+7;
const int maxn = 2007;
ll C[maxn][maxn]; //组合数
// 当且仅当使用了 k 个字母时候
// 去除与1~k-1重复的情况后
// 产生的方案数f(k) (first name)
ll f[maxn];
ll qpow(ll a, ll b){ //快速幂
ll ans=1;
while(b){
if(b&1) ans = (ans*a)%MOD;
b>>=1;
a = a*a%MOD;
}
return ans;
}
void init(){
rep(i, 0, maxn){ //组合数
C[i][0] =1;
rep(j, 1, i+1){
C[i][j] = (C[i-1][j-1]+C[i-1][j])%MOD;
}
}
return ;
}
int main(){
int t;
scanf("%d", &t);
init();
f[1]=1;
while(t--){
ll n, m ;
scanf("%lld %lld", &n, &m);
ll ans=0;
rep(k,1, m){
ll tmp = qpow(k, n);
rep(j, 1, k){
tmp = (tmp - C[k][j]*f[j]%MOD + MOD)%MOD;
}
f[k] = tmp;
tmp = tmp*C[m][k]%MOD*qpow(m-k, n)%MOD;
ans+=tmp;
ans%=MOD;
}
cout << ans <<endl;
}
return 0;
}