详解只出现一次的数字(三种情形)

文章提供了三个C语言实现的算法,分别用于找出数组中唯一出现一次的元素、唯一出现一次的元素在3的倍数次之外的情况,以及找出两个只出现一次的元素。这些算法利用了异或操作和位运算,具有线性时间复杂度和常量额外空间的要求。
摘要由CSDN通过智能技术生成

目录

一、只出现一次的数字

二、只出现一次的数字 ||

三、只出现一次的数字 |||



一、只出现一次的数字

题目描述

给你一个非空整数数组 nums除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现一次的元素。

你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。

示例 1

输入:nums = [2,2,1]

输出:1

示例 2

输入:nums = [4,1,2,1,2]

输出:4

示例 3

输入:nums = [1]

输出:1

提示:

  • 1 <= nums.length <= 3 * 10^4

  • -3 * 10^4 <= nums[i] <= 3 * 10^4

  • 除了某个元素只出现一次以外,其余每个元素均出现两次。

代码实现(C 语言)

int singleNumber(int* nums, int numsSize)
{
    int result = nums[0];
    for (int i = 1; i < numsSize; i++)
    {
        result ^= nums[i];
    }
    return result;
}

二、只出现一次的数字 ||

题目描述

给你一个整数数组 nums除某个元素仅出现一次外,其余每个元素都恰出现三次。请你找出并返回那个只出现了一次的元素。

你必须设计并实现线性时间复杂度的算法且不使用额外空间来解决此问题。

示例 1

输入:nums = [2,2,3,2]

输出:3

示例 2

输入:nums = [0,1,0,1,0,1,99]

输出:99

提示:

  • 1 <= nums.length <= 3 * 10^4

  • -2^31 <= nums[i] <= 2^31 - 1

  • nums 中,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次

代码实现(C 语言)

int singleNumber(int* nums, int numsSize)
{
	int result = 0;
	for (int i = 0; i < 32; i++)
	{
		int cnt = 0;
		for (int j = 0; j < numsSize; j++)
		{
            // 遍历 nums,统计第 i 位出现 1 的次数
			if (nums[j] & ((size_t)1 << i))
			{
				cnt += 1;
			}
		}
		if (cnt % 3 != 0)
		{
			result |= ((size_t)1 << i);
		}
	}
	return result;
}

分析

遍历整数数组 nums,依次统计每一位出现 1 的次数。

  1. 如果第 i 位出现 1 的次数对 3 取余后的结果是 0,则表明只出现一次的数字的第 i 位是 0。

    cnt 为 0,或者为 3 的倍数

  2. 如果第 i 位出现 1 的次数对 3 取余后的结果不是 0,则表明只出现一次的数字的第 i 位是 1。

三、只出现一次的数字 |||

题目描述

给你一个整数数组 nums其中恰好有两个元素只出现一次,其余所有元素均出现两次。 找出只出现一次的那两个元素。你可以按任意顺序返回答案。

你必须设计并实现线性时间复杂度的算法且仅使用常量额外空间来解决此问题。

示例 1

输入:nums = [1,2,1,3,2,5]

输出:[3,5]

解释:[5, 3] 也是有效的答案。

示例 2

输入:nums = [-1,0]

输出:[-1,0]

示例 3

输入:nums = [0,1]

输出:[1,0]

提示:

  • 2 <= nums.length <= 3 * 10^4

  • -2^31 <= nums[i] <= 2^31 - 1

  • 除两个只出现一次的整数外,nums 中的其他数字都出现两次

代码实现(C 语言)

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* singleNumber(int* nums, int numsSize, int* returnSize)
{
    *returnSize = 2;
    int* ans = (int*)malloc(2 * sizeof(int));
    // result 用来存放两个只出现一次的数字的异或结果
    int result = nums[0];  
    for (int i = 1; i < numsSize; i++)
    {
        result ^= nums[i];
    }
    // pos 用来记录 result 二进制表示中最低位的 1 的位置
    int pos = 0;  
    for (int i = 0; i < 32; i++)
    {
        if (result & ((size_t)1 << i))
        {
            pos = i;
            break;
        }
    }
    // 根据第 pos 位是否为 1,将 nums 分成两组
    ans[0] = 0;
    ans[1] = 0;
    for (int i = 0; i < numsSize; i++)
    {
        if (nums[i] & ((size_t)1 << pos))
        {
            ans[0] ^= nums[i];
        }
        else
        {
            ans[1] ^= nums[i];
        }
    }
    return ans;
}

分析

如果能够将原数组拆分为两个子数组,在每个子数组中,包含一个只出现一次的数字,其他数字都出现两次,那么就可以分别求出这两个只出现一次的数字了。

具体操作

  1. 首先从头到尾依次异或整型数组中的每一个数字,最终得到的结果就是两个只出现一次的数字的异或结果,该结果的二进制表示中至少有一位是 1,找到最低位的 1 的位置,记为第 pos 位。

  2. 然后以第 pos 位是不是 1 为标准把原数组拆分成两个子数组,第一个子数组中的每个数字的第 pos 为都为 1,而第二个子数组中的每个数字的第 pos 位则都为 0。

示例

输入:nums = [4,1,2,1,2,3]

输出:3 和 4

4 ^ 3 的结果是 7(即 111),pos 为 0,那么第一个子数组中的数字为:1,1,3;第二个子数组中的数字为:4,2,2

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值