扩展中国剩余定理

问题描述

 

求解同余方程组

\left\{\begin{matrix} x \equiv a_{1}(mod..m_{1})\\ x \equiv a_{2}(mod..m_{2})\\ x \equiv a_{3}(mod..m_{3})\\ ...\\ x \equiv a_{k}(mod..m_{k})\\ \end{matrix}\right.

解释思路

假设已经求出前k-1个方程组成的同余方程组的一个解为x_{k-1}
M为前k-1个方程的m的最小公倍数 
则前k-1个方程的方程组通解为x_{k-1}+iM(i∈Z)
那么对于加入第k个方程后的方程组
我们就是要求一个正整数t,使得
x_{k-1}+tM == a[k] (mod m[k]) 
变形得Mt==(a[k]-x_{k-1})(mod m[k]) 
即求解不定方程 Mt + m[k]y = a[k] - x_{k-1}的t 
x_{k} = tM+x_{k-1}

 代码

ll m[N];
ll a[N];
int  n;
ll exgcd(ll a,ll b,ll &x,ll &y){//这一层为x1,y1 
	if(b == 0){
		x = 1; y = 0;
		return a;
	}
	ll d = exgcd(b, a%b, x, y);//这一层为x2,y2,下面赋值语句后面的都是修改过的值 
	ll xt= x;//先存下x2的值,后面会修改 
	x = y;//x1=y2
	y = xt - a / b * y;//y1=x2-a/b*y2
	//此时修改后得到本层的x,y的值 
	return d;
}
ll excrt(){
	ll x,y,t;
	ll M=m[1],ans=a[1];
	for(int k=2;k<=n;k++){//求前k个方程的解ans
		ll gcd=exgcd(M,m[k],x,y);
		if((a[k]-ans)%gcd)return -1;//无解
		t=(a[k]-ans)/gcd*x;
		ans=ans+t*M; 
		M=M*m[k]/gcd;//前k个m的最小公倍数 
		ans=(ans%M+M)%M;//防止溢出 
	}
	return ans;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值