Balanced Binary Tree

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

这一题一开始是这样写的,完全错了。


代码如下:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        if(root==null) return true;
        if(Math.abs(getDepth(root.left)-getDepth(root.right))<=1) return true;
        return isBalanced(root.left)&&isBalanced(root.right);
    }
    private int getDepth(TreeNode root) {
        if(root == null) return 0;
        return Math.max(getDepth(root.left),getDepth(root.right))+1;
    }
}

上面代码忽视了 Mah.abs<=1和左子树也是平衡树,右子树也是平衡树都要同时成立才能返回true。

按照上述代码,只要根节点的左孩子结点和右孩子结点的高度差在1之内就成立,但实际上还要考虑左孩子以及右孩子结点本身是不是平衡树。


修改后如下;

public boolean isBalanced(TreeNode root) {
if (root == null) return true;
return Math.abs(maxDepth(root.left) - maxDepth(root.right)) <= 1
&& isBalanced(root.left)
&& isBalanced(root.right);
}
public int maxDepth(TreeNode root) {
if (root == null) return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
但是上面代码时间复杂度会比较高,是从上往下递归。

改成从下往上可以变为:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        if(maxDepth(root)!=-1) return true;
        else return false;
    }
    private int maxDepth(TreeNode root) {
        if(root==null) return 0;
        int left = maxDepth(root.left);
        if(left==-1) return -1;
        int right = maxDepth(root.right);
        if(right==-1) return -1;
        return (Math.abs(left-right)<=1)?Math.max(left,right)+1:-1;
    }
}
这里是直接考虑如果不是平衡树那么,就直接设置高度为-1,也就是只要根的高度不是-1,那么就代表是平衡树。


</pre><pre name="code" class="java">
</pre><pre name="code" class="java">
</pre><pre name="code" class="java">
</pre><pre name="code" class="java">
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        if(root==null) return true;
        if(Math.abs(getDepth(root.left)-getDepth(root.right))<=1) return true;
        return isBalanced(root.left)&&isBalanced(root.right);
    }
    private int getDepth(TreeNode root) {
        if(root == null) return 0;
        return Math.max(getDepth(root.left),getDepth(root.right))+1;
    }
}

上面代码忽视了 Mah.abs<=1和左子树也是平衡树,右子树也是平衡树都要同时成立才能返回true。

按照上述代码,只要根节点的左孩子结点和右孩子结点的高度差在1之内就成立,但实际上还要考虑左孩子以及右孩子结点本身是不是平衡树。


修改后如下;

public boolean isBalanced(TreeNode root) {
if (root == null) return true;
return Math.abs(maxDepth(root.left) - maxDepth(root.right)) <= 1
&& isBalanced(root.left)
&& isBalanced(root.right);
}
public int maxDepth(TreeNode root) {
if (root == null) return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
但是上面代码时间复杂度会比较高,是从上往下递归。

改成从下往上可以变为:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        if(maxDepth(root)!=-1) return true;
        else return false;
    }
    private int maxDepth(TreeNode root) {
        if(root==null) return 0;
        int left = maxDepth(root.left);
        if(left==-1) return -1;
        int right = maxDepth(root.right);
        if(right==-1) return -1;
        return (Math.abs(left-right)<=1)?Math.max(left,right)+1:-1;
    }
}
这里是直接考虑如果不是平衡树那么,就直接设置高度为-1,也就是只要根的高度不是-1,那么就代表是平衡树。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值