Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
这一题一开始是这样写的,完全错了。
代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null) return true;
if(Math.abs(getDepth(root.left)-getDepth(root.right))<=1) return true;
return isBalanced(root.left)&&isBalanced(root.right);
}
private int getDepth(TreeNode root) {
if(root == null) return 0;
return Math.max(getDepth(root.left),getDepth(root.right))+1;
}
}
上面代码忽视了 Mah.abs<=1和左子树也是平衡树,右子树也是平衡树都要同时成立才能返回true。
按照上述代码,只要根节点的左孩子结点和右孩子结点的高度差在1之内就成立,但实际上还要考虑左孩子以及右孩子结点本身是不是平衡树。
修改后如下;
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
return Math.abs(maxDepth(root.left) - maxDepth(root.right)) <= 1
&& isBalanced(root.left)
&& isBalanced(root.right);
}
public int maxDepth(TreeNode root) {
if (root == null) return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
但是上面代码时间复杂度会比较高,是从上往下递归。
改成从下往上可以变为:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(maxDepth(root)!=-1) return true;
else return false;
}
private int maxDepth(TreeNode root) {
if(root==null) return 0;
int left = maxDepth(root.left);
if(left==-1) return -1;
int right = maxDepth(root.right);
if(right==-1) return -1;
return (Math.abs(left-right)<=1)?Math.max(left,right)+1:-1;
}
}
这里是直接考虑如果不是平衡树那么,就直接设置高度为-1,也就是只要根的高度不是-1,那么就代表是平衡树。
</pre><pre name="code" class="java">
</pre><pre name="code" class="java">
</pre><pre name="code" class="java">
</pre><pre name="code" class="java">
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null) return true;
if(Math.abs(getDepth(root.left)-getDepth(root.right))<=1) return true;
return isBalanced(root.left)&&isBalanced(root.right);
}
private int getDepth(TreeNode root) {
if(root == null) return 0;
return Math.max(getDepth(root.left),getDepth(root.right))+1;
}
}
上面代码忽视了 Mah.abs<=1和左子树也是平衡树,右子树也是平衡树都要同时成立才能返回true。
按照上述代码,只要根节点的左孩子结点和右孩子结点的高度差在1之内就成立,但实际上还要考虑左孩子以及右孩子结点本身是不是平衡树。
修改后如下;
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
return Math.abs(maxDepth(root.left) - maxDepth(root.right)) <= 1
&& isBalanced(root.left)
&& isBalanced(root.right);
}
public int maxDepth(TreeNode root) {
if (root == null) return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
但是上面代码时间复杂度会比较高,是从上往下递归。
改成从下往上可以变为:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(maxDepth(root)!=-1) return true;
else return false;
}
private int maxDepth(TreeNode root) {
if(root==null) return 0;
int left = maxDepth(root.left);
if(left==-1) return -1;
int right = maxDepth(root.right);
if(right==-1) return -1;
return (Math.abs(left-right)<=1)?Math.max(left,right)+1:-1;
}
}
这里是直接考虑如果不是平衡树那么,就直接设置高度为-1,也就是只要根的高度不是-1,那么就代表是平衡树。